
Glob Change Biol. 2020;26:1271–1284. wileyonlinelibrary.com/journal/gcb   |  1271© 2019 John Wiley & Sons Ltd

1  | INTRODUC TION

The “small giant” clams (Tridacna maxima; hereafter referred to as sim-
ply “clams”) are mixotrophic organisms living in obligatory symbiosis 

with photosynthetic dinoflagellates of the family Symbiodiniaceae 
(Holt, Vahidinia, Gagnon, Morse, & Sweeney, 2014; Jantzen et al., 
2008; LaJeunesse et al., 2018). Symbiodiniaceae associate not only 
with clams but also with a diverse array of marine invertebrates, 
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Abstract
Seawater temperature rise in French Polynesia has repeatedly resulted in the bleaching 
of corals and giant clams. Because giant clams possess distinctive ectosymbiotic fea-
tures, they represent a unique and powerful model for comparing molecular pathways 
involved in (a) maintenance of symbiosis and (b) acquisition of thermotolerance among 
coral reef organisms. Herein, we explored the physiological and transcriptomic re-
sponses of the clam hosts and their photosynthetically active symbionts over a 65 day 
experiment in which clams were exposed to either normal or environmentally relevant 
elevated seawater temperatures. Additionally, we used metabarcoding data coupled 
with in situ sampling/survey data to explore the relative importance of holobiont adap-
tation (i.e., a symbiont community shift) versus acclimation (i.e., physiological changes at 
the molecular level) in the clams’ responses to environmental change. We finally com-
pared transcriptomic data to publicly available genomic datasets for Symbiodiniaceae 
dinoflagellates (both cultured and in hospite with the coral Pocillopora damicornis) to 
better tease apart the responses of both hosts and specific symbiont genotypes in this 
mutualistic association. Gene module preservation analysis revealed that the function 
of the symbionts’ photosystem II was impaired at high temperature, and this response 
was also found across all holobionts and Symbiodiniaceae lineages examined. Similarly, 
epigenetic modulation appeared to be a key response mechanism for symbionts in hos-
pite with giant clams exposed to high temperatures, and such modulation was able to 
distinguish thermotolerant from thermosensitive Cladocopium goreaui ecotypes; epige-
netic processes may, then, represent a promising research avenue for those interested 
in coral reef conservation in this era of changing global climate.

K E Y W O R D S

co-expression network analysis, giant clams, metabarcoding, RNA-Seq, Symbiodiniaceae, 
thermo-acclimation



1272  |     ALVES MONTEIRO ET AL.

namely sponges, mollusks, and cnidarians; indeed, the coral–
Symbiodiniaceae symbiosis is the functional basis of all coral reefs 
(Hughes et al., 2003). Whereas in scleractinian corals, symbionts are 
located intracellularly, in clams they reside extracellularly inside a tu-
bular system (“Z-tubules”), which is (a) found in the outer epithelium 
of the mantle and (b) connected to the stomach (Norton, Shepherd, 
Long, & Fitt, 1992). These in hospite dinoflagellates are known to 
provide nutrients to their clam hosts via photosynthesis and may ac-
count for a major part of the clams’ energy needs (depending on the 
species and the life history stage; Hawkins & Klumpp, 1995; Klumpp, 
Bayne, & Hawkins, 1992; Klumpp & Griffiths, 1994; Lucas, 1994; Soo 
& Todd, 2014).

The systematics of the family Symbiodiniaceae have recently 
been revised to include at least nine different genera (formerly re-
ferred to as “clades”) with well-characterized molecular and physio-
logical differences (LaJeunesse et al., 2018). One Symbiodiniaceae 
genus, formerly known as clade A (which includes the species 
Symbiodinium fitti, S. microadriaticum, and S. tridacnidorum), has been 
recurrently found in symbiosis with T. maxima, though members of 
clades C (Cladocopium) and D (Durusdinium) have been found in clam 
tissues, as well (Baillie, Belda-Baillie, & Maruyama, 2000; DeBoer 
et al., 2012; Ikeda et al., 2017; LaJeunesse, 2001; Lee et al., 2015; 
Mies, Van Sluys, Metcalfe, & Sumida, 2017; Pinzón, Devlin-Durante, 
Weber, Baums, & LaJeunesse, 2011). Depending on the clam species, 
the symbiont assemblage has been found to vary with individual size 
(mostly observed in T. squamosa) as well as across environmental 
gradients (especially seawater temperatures; DeBoer et al., 2012; 
Ikeda et al., 2017).

In French Polynesia, eastern Tuamotu's archipelagos were his-
torically characterized by high densities of clams (Andréfouët et al., 
2013; Gilbert, Remoissenet, Yan, & Andrefouet, 2006; Gilbert et al., 
2005). Recent mortality episodes and/or “bleaching” events in the 
Tuamotu Islands have, however, been reported, including (a) a mas-
sive mortality event in 2009 that reduced the clam population by 
90% at Tatakoto Atoll (Andréfouët et al., 2013; Van Wynsberge, 
Andréfouët, Gaertner-Mazouni, & Remoissenet, 2018) and (b) a 
bleaching event in 2016 that affected 77% and 90% of the wild 
and cultured giant clam populations, respectively, at Reao Atoll 
(Andréfouët et al., 2017). An increase in surface seawater tempera-
ture over a prolonged period (approximately 3 months above 30°C) 
is suspected to have triggered such bleaching events (Andréfouët 
et al., 2013, 2017; Van Wynsberge et al., 2018).

As with corals, bleaching in clams corresponds to the loss of sym-
biotic Symbiodiniaceae from the hosts (Andréfouët et al., 2013; Buck, 
2002; Fitt, Brown, Warner, & Dunne, 2001; Hoegh-Guldberg et al., 
2007; Leggat, Buck, Grice, & Yellowlees, 2003). Symbiodiniaceae 
community variability and diversity (i.e., the collective assemblage 
of various genera and/or species) seem to be a determining factor 
in the sensitivity and resilience of both coral and clam hosts to in-
creased temperatures (Barshis, Ladner, Oliver, & Palumbi, 2014; 
Barshis et al., 2013; Ladner, Barshis, & Palumbi, 2012; Rowan, 
Knowlton, Baker, & Jara, 1997). However, the cell physiology of the 
host and symbionts is likely to be as important, if not more so, than 

the Symbiodiniaceae assemblage, in terms of gauging the ability of 
the clam–Symbiodiniaceae symbiosis to acclimate to elevated tem-
perature over prolonged durations.

To date, few studies have investigated the transcriptomic re-
sponse of giant clams to elevated temperatures; lipid profiling anal-
yses are more routinely undertaken (Dubousquet et al., 2016). The 
transcriptomic response to elevated temperature of several other 
taxa, mostly scleractinian coral species (Crowder, Meyer, Fan, & 
Weis, 2017; Hou et al., 2018; Kenkel & Matz, 2016; Pinzón et al., 
2015) and cultured Symbiodiniaceae (Gierz, Forêt, & Leggat, 2017; 
Levin et al., 2016), has also been explored, yet few studies have 
looked at the mRNA level responses of multiple Symbiodiniaceae 
clades and host systems in the same study. Furthermore, few phys-
iological data and even fewer transcriptomic data are available for 
the high-temperature responses of the giant clam T. maxima and its 
symbionts (but see Dubousquet et al., 2016; Zhou, Liu, Wang, Luo, 
& Li, 2018); these two published studies, though, only considered 
the response to an abrupt, rapid increase in temperature (short-term 
stress response).

Consequently, our understanding of the possible key drivers in 
high-temperature acclimation remains largely incomplete, despite its 
importance in generating better predictions of the impact of climate 
change on wild populations of giant clams (Van Wynsberge et al., 
2018). Given such knowledge deficiencies, we aimed herein to char-
acterize the physiological and transcriptomic responses of clams and 
their symbionts to hypothetically sublethal elevated temperatures 
(~30.7°C over a 2 month period) that aimed to mimic past episodes 
of anomalously high temperatures in French Polynesia. In addition to 
hypothesizing that the giant clams would ultimately acclimate to this 
experimentally elevated temperature, we further hypothesized that 
a “dual-compartmental” bioinformatic approach, similar to the one 
that has been used with corals (Mayfield, Wang, Chen, Lin, & Chen, 
2014), would provide insight into the key molecular pathways under-
lying the ability of each member of this association to acclimate to an 
environmentally relevant, sublethal temperature.

2  | MATERIAL S AND METHODS

2.1 | Experimental design, tissue sampling, and 
physiological measurements

The experimental procedures were first described by Brahmi et al. 
(2019). Briefly, 24 individual clams (N = 4/treatment) were sampled 
over a 65 day period (days 29, 53, and 65) in control (29.2°C; ambient 
at the time of experimentation) and elevated (30.7°C) temperature 
conditions. The temperatures employed and the duration of the ex-
periment reflect conditions in normal and abnormally hot seasons, 
respectively (correlated with mass clam bleaching events; Addessi, 
2001) reported in lagoons of French Polynesia's Tuamotu region 
(Brahmi et al., 2019).

Samples (approx. 1 cm2) from each of the two treatments at 
each of the three sampling times were systematically collected 
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from the same region of the mantle and stored in RNALater® (Life 
Technologies) at −80°C until analysis (N = 24). Furthermore, a single 
hermaphroditic individual (approximately 2 years old) was sampled 
for a total of seven different tissues (mantle, adductor muscle, go-
nads, gills, byssus, visceral mass, and kidney) for transcriptome as-
sembly. Only one individual was used in an effort to reduce assembly 
polymorphism biases. For this individual, which was excluded from 
the quantification analysis outlined below, sexual status was con-
firmed by gonad biopsy and histology following a previously de-
tailed procedure (Menoud et al., 2016). Additionally, 10 giant clams 
were collected in situ in October 2018 around Reao Atoll (Tuamotu 
Archipelago, French Polynesia); tissues from each of these in situ in-
dividuals were collected from the same region of the mantle (approx. 
1 cm2) and stored in 95% ethanol at −20°C until later symbiont com-
munity analysis (described below).

As described in detail in Brahmi et al. (2019), a variety of phys-
iological response variables were assessed in the 24 experimen-
tal replicates, in addition to the profiling of their transcriptomes: 
growth, Symbiodiniaceae density, and the maximum dark-adapted 
yield of photosystem II (Fv/Fm; as measured by an AquaPen pulse 
amplitude modulating fluorometer; APC-100m, Photon System 
Instruments). Please see Brahmi et al. (2019) for details on these 
analyses. Physiological data were tested with two-way ANOVA 
(treatment × time) followed by Tukey's “honestly significant differ-
ence” (HSD) post hoc tests (p < .05), including the interaction be-
tween time and temperature, when data (raw or transformed) met 
the assumptions for ANOVA. For Symbiodiniaceae density and 
Fv/Fm, a nonparametric equivalent of the two-way ANOVA, the 
Scheirer–Ray–Hare test, was instead used (followed by Dunn's post 
hoc tests).

2.2 | DNA/RNA extractions and 
transcriptome sequencing

Total RNA was extracted from T. maxima mantles by lacerating tis-
sues with a scalpel and rinsing with 1X PBS. Cellular lysis was in-
duced by addition of 1.5 ml TRIzol (Invitrogen) according to the 
manufacturer's recommendations. The supernatant was transferred 
into a 2 ml tube and incubated for 10 min on ice. Phase separation 
was achieved by addition of 300 μl of chloroform coupled with 
centrifugation at 12,000 g for 12 min at 4°C. The upper aqueous 
layer contained the RNA, and the lower organic layer was stored at 
−20°C for later DNA extraction (according to the manufacturer's 
recommendations). Total RNA from each individual was subjected 
to a DNAse treatment using Qiagen's RNA cleanup kit. RNA and 
DNA were quantified using a NanoDrop ND-2000 spectrophotom-
eter (Thermo-Fisher), and RNA quality was further evaluated by a 
Bioanalyzer 2100 (Agilent). High-quality RNA was sent to McGill 
University's Genome Quebec Innovation Center for Nextera XT li-
brary preparation and sequencing on an Illumina HiSeq4000 100 bp 
paired-end platform. Samples for transcriptome assembly (N = 7) 
were sequenced on a single lane, while samples for expression level 

quantification analysis (N = 24) were uniformly and randomly distrib-
uted over two sequencing lanes after barcoding.

2.3 | Transcriptome assembly

Raw reads provided by RNA-Seq were filtered for quality and length 
using Trimmomatic v.0.36 (Bolger, Lohse, & Usadel, 2014) with min-
imum length, trailing, and leading quality parameters set to 60 bp, 
20, and 20, respectively. Illumina's adaptors and residual cloning 
vectors were removed via the UNIVEC database (https ://www.
ncbi.nlm.nih.gov/tools/ vecsc reen/unive c/). Paired-end filtered 
reads were assembled de novo using Trinity v2.6.6 (Haas et al., 
2013) with a default k-mer size of 25 bp and a minimum transcript 
length of 200 bp. Raw transcripts (n = 726,689; 420 Gbp) were fil-
tered for the presence of open reading frames (length ≥ 300 bp), 
longest isoform matches, and mapping rate (≥0.5 transcripts per 
million).

Transcripts matching Refseq entries from archaea, plasmids, 
viruses, and bacteria (BLASTn; e-value < 10–10), as well those tran-
scripts that aligned significantly (e-value < 10–4) only to bacterial 
sequences in the NCBI nt database (max target seqs = 5), were dis-
carded in an effort to reduce putative contamination. To segregate 
between symbiont and host sources, the meta-transcriptome was 
blasted (BLASTn; e-value < 10–4) against a pool of Symbiodiniaceae 
genomes and transcriptomes including former clades A, C, and F 
(sensu; González-Pech, Ragan, & Chan, 2017). By default, all hits 
with no match were considered as originating from the host. For 
quality control, the de novo transcriptome's completeness was 
assessed with BUSCO’s v2 metazoa and v2 eukaryotes databases 
for clam and Symbiodiniaceae, respectively (Simão, Waterhouse, 
Ioannidis, Kriventseva, & Zdobnov, 2015). Transcriptomes were an-
notated by BLAST search against the Uniprot-Swissprot database 
(BLASTx; e-value < 10–4). A schematic representation of the overall 
analysis pipeline has been provided in the Github repository (https ://
github.com/jlelu yer/accli mabest).

2.4 | Compartment-specific responses  
of the clam–dinoflagellate holobiont to long-term 
temperature exposure

Filtered reads were mapped against a combined host–symbiont 
transcriptome using GSNAP v2018.07.04 (Wu, Reeder, Lawrence, 
Becker, & Brauer, 2016) using the default parameters but allowing 
for a maximum mismatch value of 3 and a minimum coverage of 0.85. 
Only properly paired and uniquely mapped reads were conserved 
for downstream analysis (“concordant_uniq”; Wu et al., 2016). Gene 
counts were conducted with HTSEQ v0.11.2 (Anders, Pyl, & Huber, 
2015) using the default parameters. A filtering step including re-
moval of genes with residual expression >1 count per million (CPM) 
in four individuals was applied, and data were transformed using 
the “rlog” function (betaPriorVar=2) implemented in the DESeq2 
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v1.23.10 R package (Love, Huber, & Anders, 2014) for host and sym-
bionts separately.

Signed co-expression networks were built for the host and sym-
biont datasets independently using the R package WGCNA with a 
filtering step for minimum overall variance (>10%) following the rec-
ommendations of Langfelder and Horvath (2008). The main goal of 
this analysis was to cluster genes in modules correlated with time, 
temperature, and relevant physiological responses (Figure 1). Briefly, 
we fixed “soft” threshold powers of six and 11 for the host and sym-
biont datasets, respectively, using the scale-free topology criterion to 
reach a model fit (|R|) of 0.90 and 0.80, respectively. The modules were 
defined using the “cutreeDynamic” function (minimum of 50 genes by 
module and default cutting height = 0.99) based on the topological 
overlap matrix, and an automatic merging step with the threshold 
fixed at 0.25 (default) allowed us to merge correlated modules. For 
each module, we defined the module membership (kME; Eigengene-
based connectivity), and only statistically significant (p < .05) modules 
were conserved for downstream functional analysis (Figure 1). Gene 
ontology (GO) enrichment analyses were conducted for each module 
using the GO_MWU R package (Wright, Aglyamova, Meyer, & Matz, 
2015) based on the background gene dataset found in WGCNA. GO 
terms were considered enriched at Benjamini–Hochberg adj. p < .05 
(minimum of three genes for any individual GO term).

2.5 | Meta-analysis of cultured and in hospite 
Symbiodiniaceae transcriptomes

We integrated publicly available datasets featuring similar experimen-
tal designs (i.e., control and elevated temperature conditions over a 

long-term timescale) to further unravel conserved symbiont responses 
across genera, holobionts, and culture environments (i.e., cultured vs. 
in hospite). Manuscript searches were conducted with the Web of 
Science platform using the search formula: «symbio* AND RNAseq* 
AND temperature» together with informal searches via other research 
engines (e.g., Google Scholar). A total of three studies met our criteria: 
Levin et al. (2016) and Gierz et al. (2017) for cultured Symbiodiniaceae 
(n = 48 transcriptomes) and Mayfield et al. (2014) for the response 
of Symbiodiniaceae in hospite with the scleractinian coral P. dami-
cornis (n = 12 transcriptomes). Gierz et al. (2017) exposed cultured 
Symbiodiniaceae (Fugacium kawagutii; formerly clade F) to a 31°C heat 
stress (control temperature = 24.5°C) over a 28 day period, while Levin 
et al. (2016) exposed Symbiodiniaceae (Cladocopium goreaui; formerly 
type C1; including established thermotolerant and thermosensitive 
phenotypes) to a 32°C heat stress (control temperature = 27°C) over 
a 13 day period. Finally, Mayfield et al. (2014) exposed corals housing 
Symbiodiniaceae (Cladocopium spp.; formerly a mixed assemblage of 
clade C individuals) to 30°C over a 9 month period (control tempera-
ture = 27°C), and both the coral hosts and in hospite Symbiodiniaceae 
appeared to have acclimated to this temperature.

Raw data processing followed the same procedure as de-
scribed above, though adapted for single-end reads for cul-
tured Symbiodiniaceae datasets. To explore the convergence of 
Symbiodiniaceae responses despite large phylogenetic differences 
across the Symbiodiniaceae genera (Symbiodinium, Cladocopium, 
and Fugacium; LaJeunesse et al., 2018), we first searched for sin-
gle-copy orthologs across the three genera using OrthoFinder 
v2.2.7 (Emms & Kelly, 2015) based on publicly available genomes 
(http://reefg enomi cs.org/; Liu et al., 2018). We found a total of 
4,215 ortho-groups that were used for downstream analyses. The 

F I G U R E  1   Symbiodiniaceae 
community representation assessed by 
qPCR, metabarcoding, and multivariate 
analysis. (a) Heatmap showing the median 
relative clade proportion by group 
(N = 4 individuals/group), as determined 
by qPCR. (b) Redundant discriminant 
analysis representation based on principal 
coordinates analysis of Euclidian distances
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count matrix was filtered for low residual expression genes (>1 
CPM in 40 individuals; 4,187 remaining genes), and raw count data 
were transformed using the “versust” function implemented in the 
DESeq2 R package (Love et al., 2014). We used the “removeBatchEf-
fect” function implemented in the Limma R package (Ritchie et al., 
2015) to remove experimental effects and fit the data prior the 
downstream analyses.

We then used a combination of redundant discriminant analysis 
(RDA) and partial dbRDAs approaches to assess the effect of tem-
perature across Symbiodiniaceae clades and experiments. First, we 
computed a Euclidian distance matrix and performed a principal co-
ordinates analysis (PCoA) on this Euclidian distance matrix using the 
“daisy” and “pcoa” functions, respectively, implemented in the “ape” 
R package (Paradis, Claude, & Strimmer, 2004). Only PCo axes ex-
plaining at least 2.5% of the total variance were kept for downstream 
analysis (Legendre & Gallagher, 2001; Legendre & Legendre, 2012). 
To test for the effect of temperature and time, a distance-based re-
dundancy analysis (db-RDA) was also produced with the retained PCo 
factors (n = 8) as a response matrix and the variables temperature, 
experiment, and time as the explanatory factors. We first carried out 
stepwise model selection to identify relevant explanatory variables 
using the “ordistep” function implemented in the vegan R package 
(Oksanen et al., 2012) and ultimately retained only temperature and 
time (p < .05). Partial db-RDAs were therefore produced to test for 
the effects of these two parameters alone (no effect of experiment 
or genotype) after constraining the remaining variables. The effect 
of a given factor was considered significant when p < .05. Finally, 
we used a weighted co-expression network analysis with WGCNA 
(similar thresholds as described above but with soft power fixed at 
14) to reach a model fit (|R|) of 0.83, and subsequent module-wise 
GO enrichment analyses were undertaken using the GO_MWU R 
package (Wright et al., 2015).

2.6 | Genomic basis of thermotolerance in 
Symbiodiniaceae dinoflagellates

We used an independent WGCNA co-expression network analysis 
to search for specific gene modules correlated with thermotoler-
ance. For this purpose, we focused on the dataset of Levin et al. 
(2016), with C. goreaui as the reference genome (Liu et al., 2018). 
Indeed, this is the only study to our knowledge featuring estab-
lished thermotolerant phenotypes with transcriptomic data on 
long-term time series. The WGCNA analysis followed similar steps 
as described previously based, though based on rlog-transformed 
data (betaPrior = 2). The soft threshold power was fixed at 20 
to reach a model fit (|R|) of 0.85. The downstream, module-wise 
GO enrichment analyses followed the pipeline outlined above. 
Finally, we used the “GO_deltaRanks_correlation” function imple-
mented in the GO_MWU R package (Wright et al., 2015) to assess 
similarity between response to stress in symbiont in hospite with 
clams in and specific mechanisms of thermotolerance for cultured 
Symbiodiniaceae.

2.7 | Quantitative PCR- and metabarcoding-based 
Symbiodiniaceae analysis

We evaluated the relative levels of various Symbiodiniaceae gen-
era in our clam samples using a series of quantitative PCR (qPCR) 
assays. Amplifications were carried out on AriaMx real-time PCR 
System (Agilent) using six primer sets optimized for the amplifica-
tion of nuclear ribosomal 28S in Symbiodiniaceae of clades/genera 
A-F (Yamashita, Suzuki, Hayashibara, & Koike, 2011) following the 
protocol of Rouzé et al. (2017). The PCRs (25 µl) comprised 12.5 µl 
of 2X SYBR® Green master mix (Agilent), 10 µl of DNA (previously 
diluted to 1 ng/µl), and 1.25 µl of each primer (forward and reverse; 
each at a stock concentration of 4 µM). PCR thermocycling included 
1 cycle of pre-incubation for 10 min at 95°C, 40 cycles of amplifica-
tion (30 s at 95°C, 1 min at 64°C, and 1 min at 72°C), and a melting 
curve analysis that extended from 60°C to 95°C (30 s incubations). 
All measurements were made in duplicate, and all analyses were 
based on the threshold cycle (Ct) values of the PCR products.

Ct values were averaged across duplicate samples when the vari-
ation was not exceeding 1; otherwise, samples were rerun until delta 
Ct < 1. Similarity in relative clade abundance was assessed using PCA 
analysis of a Bray–Curtis similarity matrix with Hellinger-transformed 
data. Db-RDAs were conducted to identify whether either tem-
perature or time had a significant impact on Symbiodiniaceae as-
semblage, and an alpha level of .05 was set a priori. To complement 
data from the experimental individuals, qPCRs were carried out with 
DNA isolated from mantle fragments from the 10 wild individuals 
described above collected from Reao Atoll (geographically proximal 
to the origin of the experimental individuals; see Brahmi et al., 2019 
for details) in October 2018. Sample preparation and analyses were 
performed as described above and in Rouzé et al. (2017).

As a more detailed means of assessing Symbiodiniaceae diversity 
in the 24 clam samples, a metabarcoding analysis was undertaken 
following the protocol of Cunning, Gates, and Edmunds (2017). 
Briefly, the ITS2 gene was PCR amplified using previously described 
primers (Cunning et al., 2017) and sequenced at the facility listed 
above, albeit on a Illumina Miseq 250-bp paired-end platform. The 
Dada2 algorithm (Callahan et al., 2016) implemented in the QIIME2 
software package (Bokulich et al., 2018) was used to infer exact 
sample sequences from amplicon data. The reference database was 
directly imported from the NCBI nt repository and trained on the 
basis of the ITS2 primers following Cunning et al. (2017). Detailed 
protocols and the corresponding scripts have been made available in 
a public Github repository (https ://github.com/jlelu yer/accli mabest).

3  | RESULTS

3.1 | Physiology

We observed no mortality across the 65 day experiment, but some 
of the individuals exposed to elevated temperature showed signs of 
partial bleaching in the 30.7°C treatment by day 65. Symbiodiniaceae 
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density and photosynthetic yield (Fv/Fm) were both lower in clams 
exposed to elevated temperatures (Scheirer–Ray–Hare; H = 24.44, 
p < .001 and H = 22.88, p < .001, respectively; Figure S1). There was 
no interaction between time and temperature for Symbiodiniaceae 
Fv/Fm (Scheirer–Ray–Hare; H = 1.26, p = .53; Figure S1). Time had 
only a slight effect on Symbiodiniaceae density (Scheirer–Ray–Hare; 
H = 6.07, p = .048; Figure S1), though no post hoc differences were 
detected between individual sampling times (Dunn's test; p > .05).

3.2 | Symbiodiniaceae communities in hospite 
with clams

The Symbiodiniaceae communities of all clam hosts (from both con-
trol and high temperature conditions) were primarily composed of 
Symbiodinium spp. (formerly clade A; Figure 1a). Four clams, however, 
were characterized by secondary populations of Cladocopium spp. 
(formerly clade C; with relative proportions reaching 1.8%–32.8%), 
as well as residual quantities (<0.001%) of Breviolum (formerly clade 
B) and Fugacium (formerly clade F). There were no detectable effects 
of prolonged high-temperature exposure of the Symbiodiniaceae as-
semblages within the giant clam samples (Figure 1b). Similarly, in situ 
clam samples from Reao Atoll were also dominated by Symbiodinium 
spp. (mean 93.0% ± 10.7 SD), with smaller populations of Breviolum 
spp. and Cladocopium spp. Given the similarities in Symbiodiniaceae 
assemblages between the experimental and in situ specimens, we 
conclude that transport out of the ocean and into the aquarium hus-
bandry facility did not result in community changes that could bias 
the results described below.

Metabarcoding of the internal transcribed spacer 2 (ITS2) se-
quence resulted in an average of 186.7k ± 25.7 PE sequences per 
sample. After sequence preprocessing, the Dada2 algorithm reported 
a total of 12 amplicon sequence variants matching to Symbiodinium 
spp. (N = 9) and Cladocopium spp. (N = 3) that paralleled results from 
qPCRs. Symbiodinium sequence variants mainly matched to S. tri-
dacnidorum (formerly subclade A3; best-hit BLASTn e-value < 10–6). 
Neither cladal/genera representation based on UniFrac distance 
(PERMANOVA; pseudo-F = 1.3; q-value = 0.33) nor evenness values 

(Kruskal–Wallis; H = 0.04; q-value = 0.83) differed significantly be-
tween temperatures.

3.3 | Transcriptome assemblies

A total of 363.70 million 100 bp paired-end reads were used to as-
semble a raw meta-transcriptome (host + symbionts) of 726,689 
transcripts (420.02 Gbp). After stringent filtering and segregation of 
host and Symbiodiniaceae sequences, the assemblies resulted in a 
transcriptome for T. maxima of 24,234 contigs (N50 = 1,011 bp; GC 
content = 40.1%) and a meta-transcriptome for Symbiodiniaceae 
of 51,648 contigs (N50 = 1,027 bp; GC content = 57.9%). High G-C 
content is generally a hallmark of Symbiodiniaceae transcriptomes 
(González-Pech et al., 2017). Transcriptome statistics and annota-
tions are provided in Figure 2 and Table S1, respectively.

3.4 | Host clam acclimation response to prolonged 
high-temperature exposure

A gene co-expression network was built using the normalized RNA-
Seq data from which low-expression genes had been eliminated, and 
three modules correlated significantly (p < .05) with temperature and/
or physiological data (including oxygen production, Symbiodiniaceae 
density and Fv/FM, and host dry weight; Figure S2). No module was 
correlated with sampling time, O2 consumption, or shell extension. A 
single host module (pinkhost) positively correlated with temperature 
(R = .82) and negatively with photosynthetic rate and symbiont den-
sity (R = −.52 and −.48, respectively; Figure S2). The redhost module 
also correlated positively with Fv/Fm (R = .59) but not significantly with 
temperature (R = −.38; p = .08). Among the most enriched GO terms in 
the pinkhost module were pituitary gland development (GO:0021983), 
l-ascorbic acid metabolic processes (GO:0019852), regulation of ex-
trinsic apoptotic signaling pathways (GO:2001236), cholesterol efflux 
(GO:0033344), cilium movement (GO:0003341), and ommochrome 
biosynthetic processes (GO:0006727). Ommochromes are biological 
pigments and metabolites of tryptophan (Figon & Casas, 2019). The 

F I G U R E  2   Transcriptome assembly 
statistics. (a) Table showing various 
assembly metrics for Tridacna maxima 
and Symbiodiniaceae. (b) Density plot 
of the relative G-C content (%) for 
Symbiodiniaceae and T. maxima contigs
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redhost module was enriched for cation transport (GO:0006812), neu-
rotransmitter uptake (GO:0001504), fructose 6-phosphate metabolic 
processes (GO:0006002), and reactive oxygen species metabolic pro-
cesses (GO:0072593). Host module membership eigenvalues were 
also integrated with the symbiont network analysis (Figure 3), and a 
complete list of GO-enriched functions has been provided in Table S2.

3.5 | Acclimation to prolonged high-temperature 
exposure in Symbiodiniaceae in hospite with clams

Co-expression network analysis of Symbiodiniaceae showed more 
modules correlated with temperature than for the clam host, either 
negatively [midnightbluesymbiont (R = −.94), bluesymbiont (R = −.45)] or 
positively [cyansymbiont (R = .61), blacksymbiont (R = .91), yellowsymbiont 
(R = .52), and pinksymbiont (R = .85); Figure 3]. Among the enriched GO 
terms in the blacksymbiont module were RNA processing (GO:0006396), 
methylation (GO:0043414), chloroplast-nucleus signaling pathways 
(GO:0031930), and glycerolipid metabolic processes (GO:0046486). 
For the cyansymbiont module, enriched GO terms included response 
to vitamins (GO:0033273), response to UV-C (GO:0071494), regu-
lation of transferase activity (GO:0051338), intrinsic apoptotic 
signaling pathways (GO:0097193), and induced systemic resistance 
(GO:0009682). The yellowsymbiont module featured RNA modification 
(GO:0009451) and aspartate family amino acid metabolic processes 
(GO:0009066). Finally, the bluesymbiont module showed enrichment 

for movement of cellular or subcellular components (GO:0006928), 
reproduction (GO:0000003), regulation of cell shape (GO:0008360), 
oxidation–reduction processes (GO:0055114), and electron transport 
chain (GO:0022900) while the midnightbluesymbiont module featured 
enrichment for regulation of BMP signaling pathways (GO:0030510), 
hormone biosynthetic processes (GO:0042446), peptidyl-lysine di-
methylation (GO:0018027), short-term memory (GO:0007614), and 
response to red or far-red light (GO:0009639). The complete GO en-
richment results can be found in Table S2.

3.6 | Multivariate analysis of public 
Symbiodiniaceae datasets

We used db-RDA to document gene expression variation in public 
Symbiodiniaceae datasets (in culture and in hospite with corals and 
clams [this study]), with temperature and time as the explanatory 
variables; there was a focus on single-copy orthologs from the gen-
era Cladocopium, Fugacium, and Symbiodinium. The overall model was 
significant (p < .001), and the adjusted R2 was .12 (Figure 4). Partial 
db-RDAs showed that temperature also had a significant effect on 
total gene expression variation across genotypes and experiments 
(1,000 permutations; F = 9.07, p = .001). A WGCNA analysis was con-
ducted to identify genes cluster correlated with temperature across 
all the orthologous genes (Figure S3).

F I G U R E  3   Correlation matrix of symbiont gene expression 
modules against experimental factors (temperature and time), 
quantitative physiological traits, and module membership (ME) 
for host modules. Genes have been clustered in modules (y-axis) 
according to their co-expression values. Values in cells indicate 
Pearson's correlation scores, and only statistically significant 
correlations (p < .05) are depicted

F I G U R E  4   Redundant discriminant analysis of cultured 
Symbiodiniaceae (Cladocopium type C1 and Fugacium kawagutii) and 
in hospite with corals (Cladocopium) and giant clams (Symbiodinium 
spp.). The reference dataset only included the single-copy 
orthologous genes across the three genera (N = 4,187 orthologs 
remaining after filtering for residual expression)
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3.7 | Search for thermotolerance-specific 
genes clusters

We also conducted independent WGCNA analyses to assess accli-
matory responses in cultured Symbiodiniaceae based on the C. gore-
aui (formerly type C1) genome (Liu et al., 2018) and compared them 
with thermotolerant phenotypes (Levin et al., 2016). No individual 
module correlated with time. Instead, we found the majority of the 
genes to be correlated with temperature, and three modules were 
uncovered: darkgreyC1 (R = .82), saddlebrownC1 (R = −.89; N = 1,354), 
and orangec1 (R = −.87; N = 378; Figure S4). We also found three 
modules (darkolivegreenC1, lightgreenC1, and whiteC1) that were 
significantly correlated with thermotolerance (R = −.74, −.99, and 
.98, respectively; Figure S4) but not temperature. These modules 
effectively differentiated thermosensitive Symbiodiniaceae from 
thermotolerant C1 phenotypes described in Levin et al. (2016). 
Among the most enriched GO terms for lightgreenc1 were cellular 
response to amino acid stimulus (GO:0071230), DNA methylation 
(GO:0006306), and genetic imprinting (GO:0071514; Figure S4 
and Table S2). Furthermore, we found that impact on methylation-
associated biological processes—methylation (GO:0032259) and 
macromolecule methylation (GO:0043414)—was conserved in the 
lightgreenC1 module and the response to temperature of symbionts 
in hospite with clams (blacksymb module; Figure S5).

4  | DISCUSSION

Temperature increases are threatening marine invertebrate popula-
tions worldwide, especially for species already living at, or close to, 
their upper thermal tolerance limits (Hoffmann & Sgrò, 2011). Recent 
heat wave events have resulted in ~90% declines in T. maxima popu-
lations in some atolls of French Polynesia (Andréfouët et al., 2013, 
2017). While several studies have investigated the invertebrate (mol-
lusk and cnidarian) response to heat stress over short-term timescales, 
relatively few have investigated the prolonged response to elevated 
temperatures (e.g., Mayfield et al., 2014). Although our clam samples 
ultimately acclimated to an experimentally elevated temperature 
of nearly 31°C, Symbiodiniaceae density was reduced in thermally 
challenged clams, and both host clams and their Symbiodiniaceae 
populations underwent gene expression changes over the course of 
this 2 month experiment. Upon discussing such temperature-driven 
changes in gene expression, we highlight some intrinsic responses of 
the symbionts (i.e., independent of the host species) and identify key 
mechanisms potentially underlying their thermal tolerance.

4.1 | Genus-specific fidelity in clam hosts might 
preclude symbiont community shifts/shuffling as 
a thermal acclimation strategy

A 1.5°C temperature elevation over a 65 day period was sufficient 
to induce a significant reduction in symbiont density in clams; no 

bleaching (even partial) was observed in control temperature 
clams. Our results support previous studies of corals and giant 
clams in which high-temperature exposure led to sublethal bleach-
ing (Ainsworth, Hoegh-Guldberg, Heron, Skirving, & Leggat, 2008; 
Brahmi et al., 2019; Hoegh-Guldberg & Smith, 1989; Jones, Hoegh-
Guldberg, Larkum, & Schreiber, 1998; Leggat et al., 2003; Warner, 
Fitt, & Schmidt, 1999; Zhou et al., 2018); whether the cellular mech-
anisms of bleaching are conserved between corals and giant clams 
remains to be determined (Mies, Voolstra, et al., 2017; Zhou et al., 
2018).

For some coral species, resilience to heat stress is associated 
with a more flexible symbiotic association (i.e., the capacity to shift 
from one dominant Symbiodiniaceae genus to another; Hume et al., 
2015; LaJeunesse et al., 2004; Putnam, Stat, Pochon, & Gates, 
2012; Rowan, 2004; Silverstein, Correa, & Baker, 2012). Indeed, 
some bleaching events have largely been attributed to the ther-
mal sensitivity of specific endosymbiotic Symbiodiniaceae resid-
ing in coral host tissues (Berkelmans & van Oppen, 2006; Oliver & 
Palumbi, 2011). Corals hosting Cladocopium spp. (formerly clade C)  
are typically more prone to bleaching, whereas those housing cer-
tain lineages of Durusdinium (formerly clade D) have demonstrated 
enhanced thermotolerance (Baker, 2003; Mieog, van Oppen, 
Cantin, Stam, & Olsen, 2007). Interestingly, Cladocopium spp. and/or 
Durusdinium spp. are more commonly found in giant clams inhabiting 
warmer environments while Symbiodinium spp. (formerly clade A)  
are more common in clams located in cooler waters (DeBoer et al., 
2012). Herein, the Symbiodiniaceae communities were predom-
inantly composed of Symbiodinium spp., even after 2 months of 
high-temperature exposure; this finding aligns with other studies 
in corals that found Symbiodiniaceae assemblages to be temporally 
stable, even as environmental conditions changed (Goulet, 2006; 
Sampayo, Ridgway, Bongaerts, & Hoegh-Guldberg, 2008; Thornhill, 
LaJeunesse, Kemp, Fitt, & Schmidt, 2006; Thornhill, Xiang, Fitt, & 
Santos, 2009). This was not an artifact due to the experimental con-
ditions enacted since individuals sampled from their original loca-
tions in situ also predominantly host Symbiodinium spp. (i.e., clade A).

Such a high proportion of Symbiodinium spp. in giant clams 
was expected, and it has also been reported in the sea anemone 
Anemonia viridis; however, it is in sharp contrast with other inver-
tebrate hosts such as corals, which host a broader Symbiodiniaceae 
diversity (Manning & Gates, 2008; Rouzé et al., 2017; Stat, Carter, & 
Hoegh-Guldberg, 2006). This near-exclusive hosting of Symbiodinium 
spp. in clams, and the temporal stability of their association, sug-
gests that some selection process favors this dinoflagellate lineage 
(or else impairs recruitment of others); lectin/glycan interactions 
were once thought to play a role, possibly in the primary recogni-
tion-related processes (Wood-Charlson, Hollingsworth, Krupp, & 
Weis, 2006), though this hypothesis has recently been called into 
question (Parkinson et al., 2018). Admittedly, broader in situ clam 
sampling (e.g., encompassing different times of the year) will be nec-
essary to verify the fidelity between Symbiodinium spp. and giant 
clams, and whether mixed-genera assemblages are common in situ 
(DeBoer et al., 2012; Parkinson, Banaszak, Altman, LaJeunesse, & 
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Baums, 2015). The presumably low flexibility would appear to pre-
clude community shifts as a strategy for these clams to cope with 
increased temperatures, at least in our experimental context. Rather 
than adaptation (i.e., a community shift resulting in a new “holobi-
ont genomic landscape”), acclimation (i.e., physiological changes that 
initially manifested at the molecular level) appears to have played a 
larger role in this study.

4.2 | Effect of prolonged exposure to elevated 
temperature on the clam transcriptome

Both host clam and Symbiodiniaceae gene expression were affected 
by elevated temperature exposure, with no significant effects of time 
from 29 days onwards; the temperature-related differences were 
from thenceforth sustained over time. We found one gene module 
positively impacted by temperature and negatively correlated with 
symbiont Fv/Fm and density. This module showed enrichment for 
ommochrome biosynthesis process and specifically included the 
tryptophan 2,3-dioxygenase coding gene (TDO), a pivotal regulator 
of systemic tryptophan levels also involved in the response to oxida-
tive stress (Forrest et al., 2004; Thackray, Mowat, & Chapman, 2008). 
Tryptophan is the precursor of 5-hydroxytryptamine (5-HT), a bivalve 
serotonin transmitter that plays critical roles in numerous physiologi-
cal functions (e.g., reproduction; Alavi, Nagasawa, Takahashi, & Osada, 
2017). In larvae from the coral Orbicella faveolata, TDO (referred to as 
AGAP) was upregulated in response to ultraviolet radiation, and larval 
fitness (locomotion and settlement) went on to suffer (Aranda et al., 
2011). A more thorough understanding, then, of ommochrome bio-
synthesis and, more generally, tryptophan regulation is likely to be key 
to elucidating the molecular regulation of invertebrate–dinoflagellate 
symbioses, nearly all of which involve at least some degree of nitrogen 
transfer within holobionts (Chan et al., 2018).

A single module was (a) positively correlated with the maximum 
dark-adapted yield of photosystem II (Fv/Fm) and (b) enriched for 
genes encoding proteins involved in glyceraldehyde-3-phosphate 
metabolic processes. Glycerol excretion from dinoflagellate symbi-
onts is largely influenced by the presence of host tissues (Muscatine, 
1967). The glyceraldehyde-3-phosphate pathway, which culminates 
in glycerol production, was also significantly affected by sublethal 
elevated temperature (30°C) exposure in the reef coral P. damicornis 
(Mayfield et al., 2014). Pollutant exposure also altered the expres-
sion of genes involved in carbohydrate metabolism, albeit only in 
the coral host compartment (and not in Symbiodiniaceae) in another 
study (Gust et al., 2014). Admittedly, we did not assess the propor-
tion of energy derived from autotrophy herein, which ranges widely 
(from 25% to up to 100%) and is dependent on the species and/or 
life history stage in the Tridacna genus (Fisher, Fitt, & Trench, 1985; 
Klumpp et al., 1992; Klumpp & Griffiths, 1994); shifts from autot-
rophy to heterotrophy, and vice versa, are likely to affect host gene 
expression patterns. All that can be stated at present is that regu-
lation of tryptophan levels and impairment of carbohydrate metab-
olism might be key elements in the long-term response to elevated 

temperature in clams; indeed, these two processes could be inter-
linked. However, how these changes would affect fine-scale inter-
actions between the host and symbionts remains to be explored 
and should be the focus of future studies of clam–Symbiodiniaceae 
symbioses.

4.3 | The response of Symbiodiniaceae 
dinoflagellates in hospite with clams to prolonged 
elevated temperature exposure

Overall, gene clusters of Symbiodiniaceae showed positive correlation 
between expression levels and prolonged elevated temperature ex-
posure, and some of the modules were also correlated with the lower 
Symbiodiniaceae Fv/Fm and cell densities documented at elevated 
temperatures. Other physiological studies have also shown that high 
temperatures lead to diminished photosynthetic yield in several clades 
of Symbiodiniaceae (Grégoire, Schmacka, Coffroth, & Karsten, 2017). 
In terms of the RNA-Seq data, genes encoding proteins involved in 
nitrogen metabolism were significantly affected by high-temperature 
exposure, and this module correlated with host tryptophan dehydro-
genase activity. Interestingly, this GO includes the salt- and drought-
induced ring finger1 (SDIR 1)-coding gene known in plants to control 
abscisic acid (ABA) signal transduction (Zhang et al., 2007), a process 
that has never before been reported in Symbiodiniaceae. The phy-
tohormone ABA and ROS regulating/modulating proteins are key 
molecular constituents involved in the capacity to acclimate to abi-
otic stressors, including oxidative stress tolerance in unicellular algae 
(Lu & Xu, 2015). Furthermore, upregulation of ABA signaling genes is 
associated with a later increase in ABA biosynthesis in several plant 
species (Vishwakarma et al., 2017). The role of ABA signaling in the 
thermo-adaptation of Symbiodiniaceae dinoflagellates may conse-
quently be a fruitful avenue for future research.

Herein, we also found that expression of genes encoding certain 
components of the photosynthetic machinery, especially photosys-
tem II (PSII), was dampened at elevated temperature. PSII integrity 
is vital for proper Symbiodiniaceae function, and PSII damage has 
been directly linked to bleaching in corals (Warner et al., 1999). It 
is noteworthy that the same gene module also included chloroplast 
thylakoid membrane rearrangement-related genes, which are used 
by Symbiodiniaceae and other photosynthetic organisms to cope 
with heat and high UV radiation (Sharkey, 2005; Slavov et al., 2016). 
Although the clam–dinoflagellate holobionts generally appeared to 
have acclimated to elevated temperatures over a 2 month experi-
ment (no large-scale bleaching), the Symbiodiniaceae communities, 
then, showed signs of intracellular stress given these gene expres-
sion changes, as well as the decreases in cell density and Fv/Fm. 
Whether or not these holobionts could have sustained an even lon-
ger exposure to ~31°C remains to be determined, though it is worth 
noting that, unlike in situ, clams were not fed in the aquaria. It is 
thus likely that clams allowed to feed both autotrophically and het-
erotrophically might, then, have an even superior capacity for high- 
temperature acclimation.
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4.4 | Conserved response to high temperatures 
across Symbiodiniaceae genera and molecular 
mechanisms linked to thermo-acclimation capacity

We documented a conserved response to long-term exposure to el-
evated temperature across Symbiodiniaceae genera based only on 
orthologous genes, which is noteworthy given the large evolutionary 
distance between genera (Correa & Baker, 2009; LaJeunesse, 2001). 
This common response, which transcended the host effect, included 
genes involved in regulation of the DNA damage response, wound 
healing and low-temperature responses, chromatin remodeling, mRNA 
splicing, regulation of lipid biosynthetic processes, and motile cilium as-
sembly. Our results, however, most likely underestimate the molecular 
complexity of thermo-acclimation given our use of exclusively “single-
to-single” orthologous genes. It is also possible that there are holo-
biont-specific responses that were not explored or detected herein 
with our bioinformatics approach. For instance, recent studies have 
shown that the Symbiodiniaceae diverged, in part, in relation to their 
capacity for synthesizing UV-absorbing mycosporine-like amino acids 
(Shoguchi et al., 2013). Furthermore, while UV-B radiation in cultured 
Symbiodiniaceae drastically reduces photosynthetic output, such is 
not always observed for cells in hospite with clams since the clam hosts 
produce UV-absorbing proteins (Ishikura, Kato, & Maruyama, 1997).

We further explored basal differences within the Cladocopium 
genus that would differentiate the contrastingly thermotolerant phe-
notypes. We found that differences between thermotolerant phe-
notypes were driven by molecular pathways uncovered previously 
(Levin et al., 2016), including meiotic nuclear division and glutathione 
disulfide oxidoreductase activity; expression of genes involved in 
photosynthesis, cellular heat acclimation, and methylation program-
ming also differed across gradients of thermotolerance. Regarding 
the latter, epigenetic landscape rearrangement has been shown to 
play a role in transgenerational inheritance of thermotolerance of 
various plant models (Bruce, Matthes, Napier, & Pickett, 2007). Here, 
thermotolerance-associated modules generally did not correlate with 
temperature, suggesting that phenotypes have intrinsic gene expres-
sion signatures that respond differentially to changes in temperature. 
It is known that in plants DNA methylation and histone modification 
are associated with the response to heat stress, and, more specif-
ically, act to prevent heat-associated macromolecular damage (Liu, 
Feng, Li, & He, 2015). Such methylation changes might be inherited 
and account for, at least in part, the remarkable ability of plants to 
adapt and/or acclimate quickly to stressful environments (Ganguly, 
Crisp, Eichten, & Pogson, 2017; Lämke & Bäurle, 2017).

5  | CONCLUSIONS

The co-expression network analysis proved to be a powerful tool 
for dissecting compartment-specific transcriptomic responses in 
symbiotic systems. This is especially true when looking for acclima-
tory signatures that, in contrast to short-term stress responses, are 
characterized by rather subtle changes over longer periods. Indeed, 

our data from a long-term high temperature study revealed that 
different cellular processes are impacted in the host clam and in 
hospite Symbiodiniaceae compartments; genes encoding key pho-
tosynthesis proteins were particularly temperature sensitive in not 
only Symbiodiniaceae in hospite but also in culture. Future studies 
focusing on the range of optimal thermal conditions of the T. maxima 
species may improve our understanding on the thermal tolerance 
of the clams and their symbionts. Although the giant clams used in 
this study ultimately survived a 2 month exposure to nearly 31°C, it 
is possible that slightly higher temperatures, or extended exposure 
times, might cause them to bleach to such a great extent that they 
would not survive. Regardless, our data show that novel mecha-
nisms involving epigenetic landscape rearrangement are associated 
with elevated Symbiodiniaceae thermotolerance. How the impact 
of stressful environmental conditions might impact the subsequent 
generation's tolerance and/or physiological capacities (i.e., epige-
netic effects) must consequently be addressed in the near future.
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