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Abstract 

As Earth’s oceans continue to warm at alarming rates, scientists have ramped up 

efforts to learn more about arguably the planet’s most thermo-sensitive ecosystems: coral 

reefs. However, despite covering only a small areal fraction of the ocean, well under 1% 

of coral reefs have been surveyed, and many have likely never even been seen. For this 

reason, the Khaled bin Sultan Living Oceans Foundation (LOF) embarked on their 

“Global Reef Expedition” (GRE) from 2012 through 2016, characterizing thousands of 

never-before-studied reefs in all major coral reef areas and across a biological gradient 

that spanned molecules to ocean basins. We sought to leverage this rich dataset herein 

to identify areas of high coral cover that have not previously been surveyed, as this 

capacity could 1) aid in triaging conservation efforts and 2) reduce field time spent 

searching for “needle-in-a-haystack” reefs with exceptionally high coral abundance. We 

trained over 3,000 predictive models with various combinations of common 

environmental parameters (e.g., temperature, type of reef, etc.) from the LOF-GRE 

Solomon Islands dataset as a proof-of-concept, and one neural network featuring only 

nine of these predictors was associated with a validation R2 of 0.81. Although additional 

environmental and demographic predictors could be incorporated to attempt to more 

robustly predict the coral cover of unexplored reefs, this confidence is high enough to 

where managers and scientists could use the underlying model to predict where else in 

this Coral Triangle nation they are likely to find reefs with high abundance of live corals.  
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Introduction 

The rate of seawater temperature rise 

is now so rapid that we are unlikely to 

survey all extant coral reefs prior to their 

biology having been fundamentally altered 

by global-scale climate shifts stemming 

from humankind’s immense carbon 

footprint (Hughes et al., 2017). This is not 

to say that all coral reefs will cease to exist 

in the coming decades, though whether 

their biodiversity, aesthetic appeal, and 

capacity to provide myriad ecosystem 

services to both other marine fauna and 

humans (e.g., coastal protection) remains 

to be determined (Mayfield & Gates, 2007; 

Reverter et al., 2022). Very little of the 

ocean has been studied to any great extent, 

and even though coral reefs occupy only a 

small proportion of the global ocean area 

(~0.1%), few coral reefs can be said to be 

well studied at the present time (typically 

limited to those abutting well-funded 

marine laboratories; e.g., Mayfield et al. 

[2012]). The world’s most beautiful (Fig. 

1) and high-biodiversity coral reefs are 

found in the “Coral Triangle” (Clifton et 

al., 2013), an arbitrarily defined region 

extending south from Taiwan into the 

Philippines, Indonesia, Papua New Guinea, 

the Solomon Islands, and, depending on 

the cartographer, farther beyond. With the 

exception of Taiwan, no Coral Triangle 

nation currently funds coral reef research 

to any great extent. To be clear, there are 

certainly talented, passionate marine 

biologists and conservationists in these 

countries (Al-Asif et al., 2022), though at 

the present time their resources (with 

respect to funds, equipment, vessels, etc.) 

are not commensurate with the scale of 

what needs to be accomplished to foster 

the resilience of their fragile coral reefs 

(Kleypas et al., 2021).  

The SCUBA diving industry has 

generally been effective at identifying 

reefs with high tourist appeal, and in some 

resort areas, there is some knowledge as to 

where one would go to find colorful, 

biodiverse, coral-rich reefs. Elsewhere, the 

lushest, most ecologically important reefs 

may be known only to local fisher people. 

What this means is that it is almost a surety 

that there are undiscovered coral reefs in 

the Coral Triangle that may have higher 

abundance of coral than 1) the few existing 

long-term monitoring sites (Boco et al., 

2020) and 2) popular tourist sites. 

Although it is important to note that there 

is no correlation between coral cover and 

reef resilience (Wooldridge, 2014; 

Mayfield et al., 2015), there may 

nevertheless be a desire by managers, 

conservation biologists, or researchers to 

seek out a region’s most coral-abundant 

area(s). In sparsely populated areas with 

few tourists, like the Solomon Islands, 

most of these high coral cover reefs have 

likely not been previously identified, and 
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searching for them systematically would 

involve hundreds of thousands of USD 

worth of ship time over a multi-month, or 

even multi-year period. If there was a way 

to expedite the search for high coral cover 

reefs, this could dramatically reduce costs 

and field time. 

 

Fig. 1. A vibrant coral reef in the Solomon Islands extending from ~3 m (top of 

image) to ~20 m (bottom of image). This reef had not been seen by a human 

until 2014. Photograph by A.B.M. 
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 The only large-scale coral reef 

survey of the Solomon Islands was 

conducted in 2014 by the Khaled bin 

Sultan Living Oceans Foundation (LOF) 

as part of their “Global Reef Expedition” 

(GRE), the largest coral reef survey ever 

undertaken (Mayfield et al., 2019). 

Although the survey lasted a month and 

spanned the entire archipelago (Fig. 2), 

only a modest portion of the nation’s coral 

reefs were ultimately surveyed (Bruckner, 

2015). Could the resulting “molecules-to-

satellites” (i.e., encompassing data from 

the biochemical to the 100-km scale) 

dataset generated by the LOF science team 

and locally-based scientists nevertheless 

be used to develop predictive models that 

could tell us where other high coral cover 

reefs may be found in this relatively 

pristine region of the Coral Triangle? 

Towards this end, a large number of 

machine-learning and other, more 

Fig. 2. Map of the Solomon Islands, with the major study regions labeled. The 

capitol of Honiara is depicted, as well, though no surveys were undertaken nearby. 

For high-resolution interactive maps and “drop-cam” videos of select reefs, please 

go to maps.lof.org/lof. 

 

Utupua

Vanikoro

Malakobi

Kerehikapa
Sikopo

Nono Lagoon

Marovo Lagoon

Munda

Gizo
Reef 

Islands

-10º

162º

Honiara

Solomon Islands

https://maps.lof.org/lof


 

5 
 

 

Platax 19: 01-24, 2022 
doi: 10.29926/platax.202212_18.0000 

traditional models were built herein in 

JMP®  Pro (NC, USA), and we 

hypothesized that we could use a series of 

simple, cheap- and easy-to-measure 

environmental parameters (ENV) to 

predict where the country’s most coral-rich 

reefs are likely to be found.  

 

Materials and methods 

      Overview of the approach. 

Although some general remarks on the 

reef survey data are made herein, we 

generally point readers to the field report 

(Bruckner, 2015) for this information. 

Briefly, 69 sites were visited across the 

Solomon Islands archipelago (Figs. 3-11)  

Table 1. Statistical approaches for modeling benthic structure and live coral cover. 

For the multivariate analyses (multiple Y’s), the ecological (ECO) data were the 

model Y’s, with the environmental (ENV) data (n=14 unless denoted as “ENV(9)” 

in which only nine parameters were considered) as the putative predictors 

(“Model X’s”). Either all 62 ECO or the factor loading scores (n=26) derived from 

a factor analysis were used for the benthic models (“Model Y(‘s)”). Gen-

reg=generalized regression. MDS=multi-dimensional scaling. NA=not 

applicable. NN=neural network. NP-MANOVA=non-parametric multivariate 

ANOVA. PCA=principal components analysis. RS=response surface. Val 

col=validation column (training & validation samples). Val col w/test=validation 

column with test samples (training, validation, & test samples). *p<0.01. 

 

aSubset of 50 ECO associated with the transects from which corals were sampled (i.e., 12 coral genera were not found in the vicinity of 

the sampled corals; see Mayfield et al., under review.). bObtained when validating with the 20% holdback approach (Fig. 14): TanH(1)-

Linear(1)-Gaussian(3)-Boost(17).  

 

 

To be uncovered Model/analysis 
type 

Model Y(‘s) Model X‘s Validation type Conclusion;  
data location  

Multivariate effects: benthic assemblage     

Relationships among transects PCA  62 ECO NA NA Fig. 13a 

Similarity among transects MDS  62 ECO NA NA Fig. 13b 
Effect of island on benthos CCA 26 ECO factors Island* NA Fig. 13c 

Effect of reef exposure on benthos CCA 26 ECO factors Reef exposure* NA Fig. 13d 
ECO dataset complexity reduction Factor analysis 62 ECO NA NA 26-factor (68.7%) 

ECO dataset complexity reduction Factor analysis 50 ECO
a
 NA NA 15-factor (83.7%) 

ENV effects on benthic structure NP-MANOVA 62 ECO ENV1 NA Tab. 2 
ENV effects on benthic structure NIPALS 62 ECO ENV1, ENV2, ENV3, ENV-RS Kfold7, val col, val w/test Tab. 4 

ENV effects on benthic structure NIPALS 26 ECO factors ENV
1
, ENV

2
, ENV

3
, ENV-RS Kfold7, val col, val w/test Tab. 4 

Univariate effects: live coral cover (%)     

ENV effects on coral cover (%) Predictor screen % coral cover ENV
1
 NA Site (59%); Fig. 12 

ENV effects on coral cover (%) Model screen % coral cover ENV
1
 Kfold5, val col, val w/test Tab. 4 

ENV effects on coral cover (%) NN GUI-HL1 % coral cover ENV(9) 20% holdback, val col, val w/test R2=0.81b 
ENV effects on coral cover (%) NN GUI-HL1 % coral cover ENV1 Kfold5, val col, val w/test Tab. 4 

ENV effects on coral cover (%) NN GUI-HL2 % coral cover ENV
1
 Kfold5, val col, val w/test Tab. 4 

ENV effects on coral cover (%) NIPALS % coral cover ENV
1
, ENV

2
, ENV

3
, ENV-RS Kfold7, val col, val w/test Tab. 3 

ENV effects on coral cover (%) Gen-reg % coral cover ENV
1
, ENV

2
, ENV

3
, ENV-RS Minimum AICc Tab. 4 
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from October to November of 2014. 

Benthic surveys, seawater sampling, and 

reef coral sampling (Mayfield et al., 2017) 

were undertaken by LOF scientists (see 

below for details on the former.). Images 

of the reefs and sampled corals can be 

found at coralreefdiagnostics.com, while 

satellite and underwater video-derived 

habitat maps can be accessed at 

maps.lof.org/lof. Our goal herein was to 

exploit a diverse array of analytical 

approaches in JMP Pro 16 (sensu Mayfield 

[2020]) to understand environmental 

influences on coral reef ecology (Tab. 1). 

As a preliminary step, we sought to 

identify the regional environmental factors 

that are responsible for spatio-temporal 

variation in the coral reef benthic 

assemblages (i.e., the entire community; 

Rodríguez-Troncoso et al. [2019]); this 

analysis considered the benthos within a 

multivariate framework (Mayfield & Chen, 

2019). To complement this analysis, we 

conducted a more common modeling 

Fig. 3. WorldView-02 imagery depicting three 

reef sites surveyed off Munda Island 

(MU), Solomon Islands (2014-10-29).  

 

 

Fig. 4. WorldView-02 imagery depicting six reef 

sites surveyed off Gizo Island (GZ), 

Solomon Islands (2014-10-30 & 2014-10-

31).  

 

 

http://coralreefdiagnostics.com/
https://maps.lof.org/lof
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analysis of live coral cover (%) to 

determine which environmental 

conditions are associated with the highest 

percent coral cover in the Solomon Islands. 

We then used this information to train 

models capable of reliably predicting coral 

cover of undiscovered reefs.  

Data collection. Diver-based 

assessments of the benthos along point-

intercept transects laid parallel to the 

shoreline at depths between 5 and 30 m 

were undertaken at replicate locations 

within each site x depth, with photo-

quadrats imaged along similar depth 

contours in the vicinity of the transects. 

The benthic composition within the 

images was verified by eye while aboard 

the ship and merged with the data from the 

in-water diver surveys along the nearby 

transects. The following 14 ENV were 

documented and hypothesized to be 

potential drivers of variation in coral cover: 

island (n=10; see Fig. 2.), reef site, latitude, 

longitude, date (n=23 days), time (binned 

as either morning [<10:00], midday 

[10:00-14:00], or afternoon [>14:00]), 

temperature (°C), salinity (unit-less), reef 

type (fringing reef, barrier reef, patch reef, 

or other), reef exposure (protected, 

intermediately exposed, or exposed), reef 

location (fore reef or lagoon), lagoon 

(inside vs. outside), reef  (emergent vs. 

submergent), and depth (m; as four bins: 

<8 m, 8-12 m, 12-18 m, or 18-25 m). Note 

that some of these factors co-vary; for 

instance, different sites were surveyed on 

different days. Also note that, although 

sampling time was predicted to influence 

coral physiology (the focus of a 

companion work; Mayfield et al., under 

review), it was not expected to have a 

statistically significant impact on the 

benthic assemblage; it was left in 

preliminary model-building exercises 

though later removed for this reason (as 

were four other ENV; described below). 

Sixty-two ECO were considered in the 

benthic composition analysis (all in 

percentages of total benthic cover; see 

online supplemental data file [OSDF] for 

complete list of all taxa, as well as 

abbreviations used in the manuscript’s 

figures & tables.): barren substrate (PB), 

invertebrates (PITS), six algal taxa, and 54 

coral genera. 

Characterizing the benthos-I: 

multivariate approaches. To determine 

the prevailing local influences on the 

benthic structure of the surveyed reefs (as 

defined by the aforementioned 62 ECO), 

transect data were averaged across 

surveyors at each depth for each reef site; 

this resulted in 272 site x depth groups (see 

depth bins above.). We did not pool data 

across depths for each site because we 

hypothesized that coral cover and the 

benthic community would differ across 
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depths within each site. The 14 ENV were 

used as predictors in six multivariate 

analyses aimed at understanding the local 

factors that shaped the benthic structure 

(Tab. 1). First, both multi-dimensional 

scaling (MDS; method#1) and principal 

components analysis (PCA; method#2) 

were undertaken with the benthic dataset 

to depict similarity (Euclidean distance 

matrix of standardized data) and 

relationships (PCA on correlations), 

respectively, among the site x depth groups. 

The coordinates for the first six MDS 

dimensions were then used as model Y 

terms in a non-parametric multivariate 

ANOVA (NP-MANOVA; method#3) in 

which each of the 14 ENV in isolation was 

tested. As another means of reducing 

benthic dataset complexity, a factor 

analysis was undertaken (method#4), and 

26 factors were deemed by JMP Pro 16 to 

represent the optimal number of 

dimensions for explaining the highest 

percentage of variation in the dataset with 

Fig. 5. WorldView-02 imagery depicting six reef 

sites surveyed off Sikopo (SI) and 

Kerehikapa (KR) Islands, Solomon 

Islands (2014-11-01 & 2014-11-02).  

 

 

Fig. 6. WorldView-02 imagery depicting six reef 

sites surveyed off Malakobi Island (ML), 

Solomon Islands (2014-11-03 & 2014-11-

04). 
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the fewest amount of input predictors (Tab. 

1). Because NP-MANOVA uncovered 

effects of island and reef exposure on the 

reef benthos (Tab. 2), a canonical 

correlation analysis (CCA) was 

undertaken (method#5), as well, using 

JMP Pro’s “discriminant analysis” with the 

26 factor loading scores as Y’s. 

Either the 62 ECO or their associated 

26 factors were next used in partial least 

squares (PLS) analyses (non-iterative PLS 

[NIPALS]; method#6) in which various 

factorial combinations of the 14 ENV 

(first-, second-, or third-order) were the 

model X’s (i.e., predictors); the response 

surface design was tested as a fourth 

schematic. Three validation types were 

tested with each grouping of X’s for both 

the 62 ECO and the 26 factor loading 

scores (24 PLS models built in total): 

Kfold7, validation column (“Val col” in 

tables; transects randomly assigned as 

either being training [75%] or validation 

[25%] samples), and validation with test 

Fig. 7. WorldView-02 imagery depicting six reef 

sites surveyed off Marovo (MO) and Nono 

(NN) Lagoons, Solomon Islands (2014-11-

06 & 2014-11-07).  

 

 

Fig. 8. WorldView-02 imagery depicting 11 reef 

sites surveyed off Utupua (UT), Solomon 

Islands (2014-11-10 to 2014-11-13). 
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(“Val w/test;” transects randomly assigned 

as training [75%], validation [15%], or test 

[10%] samples).  

Characterizing the benthos-II: 

univariate approaches. As a simpler 

means of characterizing the benthic 

ecology, live coral cover (%) alone was 

considered as the lone model Y (Tab. 1). 

First, a predictor screen of the 14 ENV was 

undertaken (100 trees with a bootstrap 

forest algorithm) to rank the ENV with 

respect to their influence on coral cover. 

Secondly, JMP Pro’s “model screen” was 

used to test the following 13 modeling 

types with first- and second-order 

factorials of the 14 ENV (using Kfold5 

cross-validation, validation column 

holdback data, or both validation & test 

data for model validation; Tab. 4): 

ordinary least squares, stepwise regression, 

Fig. 9. WorldView-02 imagery depicting nine 

reef sites surveyed off Vanikoro (VA), 

Solomon Islands (2014-11-14 to 2014-11-

16), as well as three snorkel survey sites 

(SN1-3). 

 

 

Fig. 10. WorldView-02 imagery depicting 15 

reef sites surveyed off the Reef Islands 

(RI), Solomon Islands (2014-11-17 

through 2014-11-21). One snorkel site 

(SN4) is also shown, though data from this 

site were excluded from the comprehensive 

analyses presented herein. 
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generalized regression (gen-reg), PLS  

(NIPALS), discriminant analysis, decision 

tree, bootstrap forest, boosted tree, Naïve 

Bayes, k-nearest neighbors, support vector 

machines, neural network (NN), and 

XGBoost. When the model with the 

highest validation (or test) sample R2 was 

the NN, a NN model-tuning GUI 

developed by Diedrich Schmidt (ver. 5.0) 

was used to optimize the following model 

parameters (sensu Mayfield [2022]) with 

20% holdback, validation column, or 

validation+test data column validation and 

the weight decay penalty method: number 

of hidden layers (HL; 1 vs. 2), type of 

activation (sigmoidal [TanH], linear, or 

radial [Gaussian]), number of activation 

nodes per hidden layer (0, 1, 2, 3, or 4), 

number of boosts (ensemble models; for 

single-layer models only: 0-20), learning 

rate (only for boosted models: 0.05-0.3), 

number of tours (1-100), covariate 

transformation (transformed or 

untransformed), and robust fit (yes or no). 

At least 200 models were built for each 

combination of HL and validation type. 

Furthermore, several hundred additional 

NN models were built (Tab. 4) in which 

the number of activation nodes was 

permitted to rise to 6, up to 30 boosts could 

be featured in HL1 models, and up to 200 

tours were considered (both HL1 & HL2 

models).  

     The superior NN model was then 

used in a machine-learning “desirability 

analysis” in which the artificial 

intelligence (AI) was programmed to 

maximize coral cover. Note that because 

multiple tours were permitted, repeat runs 

of the same model could result in different 

results. For this reason, the optimal model 

(max. validation or test R2) in the NN GUI 

was run 10 times, with the highest value 

obtained presented in the manuscript’s 

tables. We set an a priori validation (or test) 

R2 cutoff of 0.8 as being of sufficient fit to 

Fig. 11. WorldView-02 imagery depicting three 

reef sites surveyed off Tinakula   

Volcano (TI), Solomon Islands (2014-11-

22). 
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be useful for predicting live coral cover in 

situ.  

Secondly, NIPALS was undertaken as 

described above with second- and third-

order factorial combinations of the 14 

ENV (as well as response surfaces) as 

model X’s and live coral cover as the 

singular Y (Tab. 3). As a tertiary means of 

determining the ENV or combinations 

thereof that best explained variation in 

coral cover, gen-reg was used with the 

following algorithms (using JMP Pro 16 

terminology): forward selection, pruned 

forward selection, “best subset,” lasso 

(regular & adaptive), elastic net (regular & 

adaptive), double lasso (regular & 

adaptive), and ridge regression. With the 

exception of the latter, in which 30% 

holdback validation was used to evaluate 

model performance, the others were 

ranked based on their AICc (with the 

model with the lowest AICc deemed 

superior). Unlike for PLS, only first and 

second-order factorials were considered as 

model X’s for gen-reg given that the 

computing power needed to test 2,744 

putative model terms (143) exceeded 64 

GB of RAM; cloud computing could be 

exploited in the future to test the efficacy 

and accuracy of these more complex 

modeling types. In general, though, gen-

reg was not found to be a robust modeling 

approach for this dataset (Tab. 4), and the 

associated results have not generally been 

discussed at length herein.  

 

Predictor
site
depth
island
longitude
salinity
temperature
date
latitude
reef type
reef location
time
exposure
reef emergence
lagoon

Contribution
36202.8
17177.6

2788.6
859.5
668.8
659.5
639.8
589.1
485.2
462.7
440.1
438.8
264.9
241.9

Portion
0.5847
0.2774
0.0450
0.0139
0.0108
0.0107
0.0103
0.0095
0.0078
0.0075
0.0071
0.0071
0.0043
0.0039

Rank
1
2
3
4
5
6
7
8
9

10
11
12
13
14

Fig. 12. Predictor screening. A bootstrap forest model with 100 random trees was used 

to estimate the contribution of each of the 14 environmental parameters to 

variation in live coral cover (%).  
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Results and Discussion 

Overview of coral cover. Live coral 

cover averaged 35±20% (std. dev. for this 

& all other error terms unless noted 

otherwise) across the 69 sites, reaching 

84% on some reefs. A predictor screen 

(Fig. 12) revealed that site location and 

depth had the greatest influence on coral 

cover, and the depth effect was particularly 

pronounced; specifically, coral cover 

varied significantly across survey depth 

bins (one-way ANOVA p<0.0001) and 

averaged 33, 51, 27, and 27% at <8, 8-12, 

12-18, and 18-25 m, respectively. Algal 

cover was oftentimes higher, averaging 

46±19% across the 69 survey sites 

(maximum site mean=97%); however, the 

coral/algae ratio was slightly greater than 

1 (1.1±1.2) when averaged across all sites 

(see OSDF.). 

   

 

 

 

 

ENV (predictor) n F p Post-hoc comparisons 

   Island 11 5.49 <0.01 see Fig. 13c 

   Site 68 2.68 <0.01  

   Latitude 68 2.36 0.03  

   Longitude 68 7.13 <0.01  

   Survey date 23 8.42 <0.01  

   Survey time 3 0.80 0.65  

   Survey depth 4 7.29 <0.01  

   Reef exposure 3 4.27 <0.01 see Fig. 13d 

   Reef type 4 2.94 <0.01 patch(a)≠fringing(bc)=barrier(c) 

   Lagoon 2 3.65 <0.01 inside lagoon≠outside lagoon 

   Reef emergence 2 0.94 0.47  

   Reef location 2 5.25 <0.01 fore reef≠lagoon 

   Temperature 15 1.40 0.22  

   Salinity 9 2.89 <0.01  

Tab. 2. Non-parametric multivariate ANOVA. Effects of the 14 environmental 

parameters (ENV) on the benthic assemblage (as 6 multi-dimensional scaling 

dimensions derived from Euclidean distances among 272 site x depth groups 

based on a similarity analysis of 62 benthic categories). Statistically significant 

differences (alpha=0.01) have been highlighted in bold. 
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Benthic composition. A two-

dimensional PCA (Fig. 13a) explained 

only 10% of the variation in the benthic 

assemblage (as assessed from the 62 ECO). 

However, upon coloring the replicate 

transects (depth x site) by coral cover in an 

MDS analysis (Fig. 13b), it was clear that 

the high coral cover assemblages differed 

from the lower ones. This is expected since 

reefs with higher coral cover are likely to 

have a more complex benthic structure 

except for when the benthos is dominated 

by a monoculture of a single dominant 

species (rarely observed in the Solomon 

Islands). A factor analysis was able to 

reduce the complexity of the 62-parameter 

benthic dataset into a 26-factor solution 

that encapsulated almost 70% of the 

variation (Tab. 1). 

 Both descriptive and predictive 

approaches were used to model the 

benthos across the 272-transect dataset 

(Tab. 1). In the former, NP-MANOVA 

(Tab. 2) found a number of ENV to 

significantly affect the benthic community   

structure, and both the island and reef 

exposure effects are depicted in two 

dimensions in Fig. 13c and 13d, 

respectively, with discriminant analysis 

(i.e., CCA). The island effect was mainly 

driven by the strange coral community at 

the base of the Tinakula Volcano; although  

corals had returned to the area since the 

2007 eruption, the ecosystem was clearly 

still in a state of succession. Interested 

readers are encouraged to check out the 

coral reef imagery on the data servers 

Model X’s Validation #factors (% variation explained) 

ENV1 Kfold7 2 factors (61%) 
ENV1 Val col 2 factors (69%) 

ENV1 Val w/ test 15 factors (68%) 

ENV2 Kfold7 5 factors (89%) 

ENV2 Val col 4 factors (84%) 

ENV2 Val w/ test 6 factors (93.6%) 
ENV3 Kfold7 4 factors (82%) 

ENV3 Val col 4 factors (84%) 

ENV3 Val w/ test 6 factors (94%) 

ENV-RS Kfold7 4 factors (82%) 

ENV-RS Val col 4 factors (84%) 
ENV-RS Val w/ test 6 factors (93.5%) 

 

Tab. 3. Partial least squares (non-iterative [NIPALS]) of environmental (ENV) 

effects (X) on percent (%) live coral cover (Y). Val col=validation column. 

Val w/test=both validation and test samples used to validate model accuracy. 

RS=response surface.  
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mentioned above. With respect to the 

strong reef exposure effect, which was 

expected given the well-studied influence 

of wave energy on reef ecosystems 

(Ferrario et al., 2014), it is interesting to 

note that the exposed and protected reefs 

were not most distinct from one another in 

terms of the benthic composition. Instead, 

the exposed reefs’ benthic community fell 

between those of the intermediately 

exposed and protected reefs.  

Predicting coral cover. To instead 

attempt to make predictions of benthic 

composition, various factorial 

combinations of the 14 ENV were used as 

model X’s, with either all 62 benthic bins 

or the 26 factors derived from the 

aforementioned factor analysis as Y’s, in a 

series of PLS analyses (Tab. 4). In general, 

however, the percent variation explained 

by even the more complex PLS model 

types were <10%, and for this reason we 

have instead focused on attempting to 

predict a singular ecological response 

metric: live coral cover. The underlying 

models of percent live coral cover (Tabs. 3 

& 4) were characterized by higher R2 

values. Even when considering the 14 

ENV alone (first-order), R2 values ranged 

from 0.6 to 0.7 (depending on validation 

type; Tab. 3). When incorporating squared 

or cubed factorial combinations of the 

environmental parameters, values rose to 

0.8-0.9. However, upon validating the PLS 

model with the highest R2 in Tab. 3 (0.94) 

with holdback data, the R2 dropped to a 

value that was below our a priori cutoff of 

0.8 (0.74). Furthermore, it is important to 

note that five of the underlying ENV-site, 

date, time of day, and, to a lesser extent, 

salinity and temperature- would not be of 

use to those looking to use these models to 

predict where other high coral cover reefs 

would be found in the Solomon Islands. 

Date, in particular should not be included 

since future survey will inherently occur 

on different days. We have left island in the 

models, though an argument could also be 

made to only consider truly general 

properties of the reefs, not to mention the 

fact that latitude and longitude will 

inherently covary with island. Upon 

removing these five terms, the model 

screening analysis was re-run, and the R2  

of one neural network was actually slightly 

higher: 0.81 (Tab. 1 & Fig. 14a). It is worth 

noting that this is far higher than R2 values 

obtained in prior meta-analyses that sought 

to predict coral cover from environmental 

data (e.g., 0.3-0.4 [Hochberg & Gierach, 

2021]).  

Unlike more traditional modeling 

types like standard least squares, the 

inclusion of fewer predictors does not 

necessarily result in a weaker fit in neural 

networks, especially when boosting is 

utilized. In a dependent resampled inputs 

analysis with this superior model (Fig. 
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14a), depth (total effect=0.43) was the 

most influential predictor. This is due in 

part to the significantly higher coral cover 

between 8 and 12 m mentioned above. In a 

desirability analysis of this neural network 

(Fig. 14b), a theoretical maximum coral 

cover of 75% could be reached at 8-12 m 

on an intermediately exposed fringing fore 

reef, and this is where surveyors looking to 

find high coral-cover reefs should go first  

in the all-too-likely event that field time 

may be limited. Note that this is actually a 

lower coral cover percentage than 

documented at some of the field sites (up 

to 84%; OSDF), meaning there are reefs in 

the country whose coral cover is actually 

higher than that predicted by the AI; this 

discrepancy should certainly be explored 

or addressed in future works.  

Even the superior neural network 

model could not accommodate ~20% of 

the variation in coral cover; additional 

environmental variables that were not  

measured herein, such as nutrient levels 

(Huang et al., 2020), are clearly important 

in determining live coral cover in the 

Solomon Islands and should be included in 

future analyses. We also plan to later 

include demographic data as potential 

predictors, namely population of the 

nearest human settlements to the study 

reefs, education level/literacy, carbon 

footprint, seawater pollution levels, and 

other such variables that could be 

hypothesized to affect the marine 

environment, and specifically coral cover. 

During surveys, we also collected a wealth 

of fish biodiversity and biomass data; 

these data should also be incorporated into 

predictive model building given the 

importance of herbivores in particular in 

maintaining reef health and function 

(Cramer et al., 2017). Upon factoring in 

additional environmental, ecological, 

seawater quality, and demographic data, it 

is not unreasonable to expect that 

predictive models of coral cover 

surpassing R2 of 0.9 could be generated. 

This would greatly aid managers in 

triaging survey or conservation efforts in 

instances in which a research team could 

not realistically survey all reefs present 

during a field season or research 

expedition (normally the case) by allowing 

them to more rapidly find areas with high 

coral cover; although not necessarily of 

higher resilience, there may nevertheless 

be a desire to prioritize such areas of high 

coral abundance for conservation. 

 

Conclusions 

Although we were not able to use a 

series of 14 ENV to robustly model the 

complex, multivariate nature of the 

shallow (0-30 m) coral reef communities 

of the Solomon Islands, the prediction of 
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Fig. 13. Multivariate analysis of the reef benthos. Principal components analysis 

(PCA; on correlations; a), multi-dimensional scaling (MDS; on standardized data; 

b), and canonical correlation analysis (CCA; c-d) were undertaken with the 62-

category benthic dataset (n=272 transects). For the biplot rays in panel a, please 

see the online supplemental data file. The legend in panel a extends to panel b. 

PB=percent barren substrate. PITS=percent invertebrate cover. Ellipses in the 

island (c) and reef exposure (d) CCA plots represent 95% confidence, and 

transects have been coded by island and reef exposure, respectively. Three island 

groups have been listed in panel c. Please see Tab. 2 for NP-MANOVA results. 
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Analysis Model Y’s Model X‘s Validation  Conclusion (model details) 

ENV effects on benthic structure   

NIPALS 62 ECO ENV(14)1 Kfold7 4-factor (8.0%) 

NIPALS 62 ECO ENV(14)1 Val col 2-factor (4.4%) 

NIPALS 62 ECO ENV(14)1 Val w/test 4-factor (8.7%) 

NIPALS 62 ECO ENV(14)2 Kfold7 1-factor (2.5%) 

NIPALS 62 ECO ENV(14)2 Val col 2-factor (5.6%) 

NIPALS 62 ECO ENV(14)2 Val w/test 3-factor (8.0%) 

NIPALS 62 ECO ENV(14)3 Kfold7 1-factor (3.0%) 

NIPALS 62 ECO ENV(14)3 Val col 1-factor (3.3%) 

NIPALS 62 ECO ENV(14)3 Val w/test 3-factor (9.0%) 

NIPALS 62 ECO ENV(14)-RS Kfold7 3-factor (7.4%) 

NIPALS 62 ECO ENV(14)-RS Val col 2-factor (5.6%) 

NIPALS 62 ECO ENV(14)-RS Val w/test 3-factor (7.9%) 

NIPALS 26 ECO factors ENV(14)1 Kfold7 4-factor (7.7%) 

NIPALS 26 ECO factors ENV(14)1 Val col 2-factor (4.5%) 

NIPALS 26 ECO factors ENV(14)1 Val w/test 3-factor (6.9%) 

NIPALS 26 ECO factors ENV(14)2 Kfold7 1-factor (2.2%) 

NIPALS 26 ECO factors ENV(14)2 Val col 2-factor (6.0%) 

NIPALS 26 ECO factors ENV(14)2 Val w/test 2-factor (5.3%) 

NIPALS 26 ECO factors ENV(14)3 Kfold7 1-factor (2.6%) 

NIPALS 26 ECO factors ENV(14)3 Val col 2-factor (7.4%) 

NIPALS 26 ECO factors ENV(14)3 Val w/test 2-factor (6.5%) 

NIPALS 26 ECO factors ENV(14)-RS Kfold7 1-factor (2.2%) 

NIPALS 26 ECO factors ENV(14)-RS Val col 2-factor (6.0%) 

NIPALS 26 ECO factors ENV(14)-RS Val w/test 2-factor (5.3%) 

Tab. 4. All predictive models (n>3,000) of environmental (ENV) effects on the 

benthic structure (ECO) or coral cover (%). Partial least squares (PLS; non-

iterative [NIPALS]) of coral cover are instead found in Tab. 3. Either all 14 ENV 

(“ENV(14)”) or a subset of 9 (“ENV(9)”) hypothesized to be of greater utility to 

managers and future researchers were included (excluding date, site, time, 

temperature, & salinity). Parenthetical sample sizes in the right-most column 

(“n=”) correspond to number of terms in the superior model. Gen-reg= 

generalized regression. NN=neural network. RS=response surface. Val 

col=validation column. Val w/test=both validation and test data columns.  
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Analysis Model Y’s Model X‘s Validation  Conclusion (model details) 

ENV effects on coral cover (%)a   

Model screen % coral cover ENV(9)1 Kfold5 NN (R2=0.52) 

Model screen % coral cover ENV(9)1 Val col NN (R2=0.44) 

Model screen % coral cover ENV(9)1 Val w/test Stepwise regression (R2=0.43) 

NN GUI-HL1 % coral cover ENV(9)1 20% holdback R2=0.81b (300 models run) 

NN GUI-HL1 % coral cover ENV(9)1 20% holdback R2=0.83 (30 models run) 

TanH(2)-Linear(1)-Gaussian(3)-

Boost(19) 

NN GUI-HL2 % coral cover ENV(9)1 20% holdback R2=0.73 (300 models run)  

NN GUI-HL1 % coral cover ENV(9)1 Val col R2=0.73 (300 models run) 

NN GUI-HL2 % coral cover ENV(9)1 Val col R2=0.63 (300 models run) 

NN GUI-HL1 % coral cover ENV(9)1 Val w/test R2=0.59 (300 models run) 

NN GUI-HL2 % coral cover ENV(9)1 Val w/test R2=0.59 (300 models run) 

Model screen % coral cover ENV(14)1 Kfold5 NN (R2=0.67) 

Model screen % coral cover ENV(14)1 Val col All model R2<0.4 

Model screen % coral cover ENV(14)1 Val w/test Bootstrap forest (R2=0.60) 

NN GUI-HL1 % coral cover ENV(14)1 Val col R2=0.62 (200 models run) 

NN GUI-HL2 % coral cover ENV(14)1 Val col R2=0.37 (200 models run) 

NN GUI-HL1 % coral cover ENV(14)1 Val w/test R2=0.73 (200 models run) 

NN GUI-HL2 % coral cover ENV(14)1 Val w/test R2=0.70 (200 models run) 

Gen-reg % coral cover ENV(14)2 Min AICc Adaptive double lasso  

(n=41; R2=0.58) 

Gen-reg % coral cover ENV(14)2 Min AICc-val col Forward selection  

(n=14; R2=0.46) 

Gen-reg % coral cover ENV(14)-RS Min AICc Adaptive double lasso  

(n=41; R2=0.58) 

Gen-reg % coral cover ENV(14)-RS Min AICc-val col Forward selection  

(n=5; R2=0.20)  

aSinH-ArcsinH-transformed data. bSee Fig. 14.
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coral cover was more successful (R2>0.80), 

even when including only nine easy-to-

measure predictors (e.g., reef type, which 

can be deduced simply by consulting a 

map). The neural networks specifically 

suggest that those interested in uncovering 

high coral cover reefs should target 

intermediately exposed fringing reefs. We 

encourage interested scientists and 

managers alike to consult the application 

(“app”) derived from the model (Fig. 15); 

this GUI allows one to toggle different 

Fig. 14. Machine-learning model-building for maximizing coral cover. A neural 

network (a) for predicting coral cover (SHASH-transformed) from nine 

environmental (ENV) parameters and a machine-learning-based “desirability 

analysis” (b) based on the associated model. The conditions/levels resulting in a 

hypothetical maximum coral cover (~75%) are displayed in the center of each plot 

in panel b.  
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environmental parameters or input new 

data to see how the theoretical coral cover 

changes and could be useful for those who 

are already in possession of basic reef 

feature data but have not yet embarked on 

surveys. Although we believe this 

Fig. 15. An interactive simulator built in JMP®  Pro 16 that allows users to predict 

live coral cover (%) based on modifying 14 common environmental 

predictors. The underlying model is that depicted in Fig. 14, and the desirability 

analysis’ theoretical maximum value is shown next to the y-axis (corresponding 

to a live coral cover of 75-80%); note that there are differences between the plots 

and those of Fig. 14 because of the large number of tours incorporated (described 

above). In this example, the reef “exposure” box was clicked to show that the 

optimal level of “intermediate” could be changed to “exposed” or “protected” 

were one interested in seeing how this would affect the predicted live coral cover. 

“Reef type” was set to “random;” one could then click “Simulate” to the right to 

generate simulated data from different proportions of the four reef types found in 

the country. This application is currently hosted on coralreefdiagnostics.com.  

 

https://coralreefdiagnostics.com/
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application/GUI will be useful for those 

working on coral reefs of the Solomon 

Islands, it is important to note some 

limitations and caveats. During model 

validation, survey data from the GRE were 

held back from the models. Then, the AI 

treated the held back data as “test” samples 

to validate the models. What this means is 

that the predictions were not actually 

ground-truthed; we did not ask our local 

colleagues to survey random 

intermediately exposed fringing reefs to 

see if their coral cover was higher than, for 

instance, protected lagoonal back reefs. 

This is surely the critical next step for 

using these, or similar, machine-learning 

models for making accurate predictions of 

the locations of the most coral-abundant 

regions. Whether this pattern is the same 

elsewhere in the Coral Triangle (or even 

further abroad) remains to be determined 

but will soon be addressed by tapping into 

similar datasets obtained on the GRE from 

elsewhere in the Indo-Pacific.   
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