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A B S T R A C T

Increases in seawater temperature associated with global climate change are causing the mutualistic relationship
between reef-building corals and the symbiotic dinoflagellates (genus Symbiodinium) that reside within their cells
to break down. There is consequently an urgent need to develop tools for modeling coral biology in response to
environmental shifts, an enterprise that is complicated by the fact that no pristine reefs remain on Earth. This
work sought to 1) uncover the environmental factors that contribute most to observed spatio-temporal variation
in coral physiology and 2) devise means of detecting anomalous behavior in field corals by analyzing a dataset
from the Austral (French Polynesia) and Cook Islands of the South Pacific with a multivariate statistical ap-
proach. Upon employing this multi-tiered analytical platform, host genotype was found to be the most significant
driver of variation in physiology of the pocilloporid coral colonies sampled across the two archipelagos.
Furthermore, those colonies demonstrating the most extensive variation across the seven response variables
assessed tended to deviate most significantly from the global mean response calculated across all samples,
suggesting that high within-sample physiological variability may be one means of delineating aberrant coral
behavior in the absence of data from pristine control reefs.

1. Introduction

Earth's coral reefs are threatened by a multitude of anthropogenic
stressors, most notably global climate change (GCC; Hoegh-Guldberg
et al., 2007; Mayfield and Gates, 2007; Hughes et al., 2018). Some reefs,
though, have proven resilient to prolonged exposure to elevated tem-
peratures (Palumbi et al., 2014; Krueger et al., 2017). Although whe-
ther these resilient reefs or, in contrast, those found to be markedly
compromised, should be prioritized for conservation is beyond the
scope of this article, there is nevertheless an urgent need to develop the
capacity to predict future coral behavior such that we may, for instance,
identify both stress-tolerant and stress-prone reefs in the near future
(Cinner et al., 2016; Putnam et al., 2017).

Ideally, an estimate of the physiological condition of a coral could
be made from a single biopsy sampled at only one time point. In hu-
mans, in which there is a much greater body of knowledge on health
and stress, we possess well-validated biomarkers, such as blood cho-
lesterol and sugar, whose concentrations are tightly associated with
later declines in health. Unfortunately, no such biomarkers have been
rigorously validated for assessment of coral health, and a plethora of

both methodological and logistical issues have thwarted progress in this
field (Louis et al., 2017). For instance, the antibodies of Downs et al.
(2000, 2002, 2005) lack specificity to either the coral host or their
endosymbiotic dinoflagellate (genus Symbiodinium) populations; these
antibodies (barring those targeting photosynthesis-related processes)
bind proteins of both compartments of the symbiosis. This issue,
though, could be remedied by the development of compartment-spe-
cific antibodies (sensu Chen et al., 2015), as well as the use of a bio-
logical composition control (Mayfield et al., 2009); with the latter ap-
proach, a host/Symbiodinium ratio of biological material (e.g., RNA,
DNA, protein, or lipid) is calculated for each sample such that macro-
molecular concentration data can be normalized in a manner that
controls for variation in the relative quantities of host anthozoan and
dinoflagellate biological material, both of which can vary significantly
across samples, over time (Mayfield et al., 2010), and/or in response to
experimental treatment (Mayfield et al., 2014a).

In addition to proteins, gene mRNAs have also been measured in
reef corals in an attempt to make conjectures about their health (Kenkel
et al., 2011; Mayfield et al., 2013a; Barshis et al., 2013). Unfortunately,
genes encoding well-studied stress proteins, such as heat shock proteins
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(HSPs; Feder, 1996) and ubiquitin ligases (ubiq-lig), are expressed at
high levels at all times by reef corals (Mayfield et al. 2011 and 2014d,
respectively), even in some of the most remote regions of the South
Pacific (Mayfield et al., 2016a); this precludes the ability to use their
mean expression levels as indicators of environmental stress. Further-
more, even were differentially regulated mRNAs identified in corals
exposed to unfavorable conditions (e.g., elevated temperatures) in the
laboratory (sensu Mayfield et al., 2013c, 2014b), it is ill-advised to
compare coral responses across experiments carried out in different
locations due to the varying effects of environmental history on coral
physiology (Mayfield et al., 2012a,b); a “control” coral used in an ex-
periment carried out in heavily impacted locations like Southern
Taiwan or the Great Barrier Reef may, for instance, actually possess a
similar phenotype as a conspecific hypothesized to be stressed in a re-
latively more pristine location (e.g., the Line Islands; Sandin et al.,
2008). In other words, even the control corals in such experiments are
likely to be physiologically compromised to some degree, given that
they were sampled from a reef threatened by GCC alone (in a remote
location) or GCC plus local, anthropogenic assaults (e.g., water pollu-
tion; Fabricius, 2005; Huang et al., 2011) in impacted locations, such as
Taiwan (Liu et al., 2012). One solution to this quandary would be to
carry out environmental challenge experiments with corals from each
reef site of interest to gain insight into how corals at diverse locales
respond to environmental change. However, undertaking controlled
tank studies may be infeasible in many remote locations, and, of more
concern, such a great length of time would be required to acquire such
data that many reefs may have already deteriorated by the time an
accurate diagnosis of their health is made.

We have recently posed an alternative that acknowledges the fact
that a healthy coral may no longer exist (Mayfield et al., 2017a,b);
barring the acquisition of coral health data derived from samples ac-
quired prior to the Industrial Revolution, it may be more pragmatic to
instead document normalcy (or lack thereof) in a particular region
(typically at the country or island-scale). Not only will such baseline
data allow us to track the continued responses of these corals to en-
vironmental change (sensuAnderson and Thompson, 2004), but coral
colonies found to be displaying statistically aberrant behavior may ul-
timately be found to be of compromised health (or, alternatively, of
marked resilience). In this work, our goal was to outline not only how
to delineate corals displaying deviant behavior, but, more generally, to
investigate the environmental factors contributing most significantly to
variation in coral physiology. The latter aim stems from the need to
address the high inter- and intra-specific variation in coral physiology
typically observed in situ (Gates and Edmunds, 1999; Manzello et al., in
press), as well as in the laboratory (Mayfield, 2016; Parkinson et al.,
2018). Specifically, we utilized two common, information theory-based
statistical approaches, stepwise regression (univariate) and distance-
based linear modeling (“DistLM;” multivariate), to identify environ-
mental parameters (EP) that contributed most significantly to variation
in coral physiology using a dataset from the Austral Islands (AI) of
French Polynesia and the Cook Islands (CI) generated during the Khaled
bin Sultan Living Oceans Foundation's (LOF) “Global Reef Expedition”
(GRE), the largest coral reef survey ever undertaken. Specifically, we
chose the AI+CI dataset because of the low degree of human impact at
these sites; by uncovering environmental drivers of variation in coral
physiology in areas not appreciably affected by local anthropogenic
stressors, we hypothesized that we could more confidently attribute the
physiological variability documented in coral colonies to natural en-
vironmental heterogeneity (rather than to local human activities).

2. Materials and methods

2.1. Description of the dataset

Details of the April–May 2013 research expedition to the AI and CI
can be found in Mayfield et al. (2015, 2016a), and the target coral for

both missions was the model reef coral Pocillopora damicornis (Traylor-
Knowles et al., 2011). We focused our efforts on this coral species not
only because of our extensive experience with it in the laboratory
(Mayfield et al., 2013a,b), but also because of its wide distribution
(Veron, 2000), especially in the territorial waters of those countries that
fund coral reef research to a significant degree: the United States,
Taiwan, Japan, Australia, and Israel. We consequently hypothesized
that it would be found at the majority of the reef sites surveyed (unlike
other proposed model corals [e.g., Orbicella faveolata and Acropora
millepora], whose ranges are much more limited).

Readers interested in the geology of these understudied regions of
the South Pacific should consult Chub (1927; AI) and Woodroffe et al.
(1990; CI). For convenience, we have reiterated key findings from our
prior works in the AI and CI in an online appendix. Briefly, 30 reef sites
were surveyed in each archipelago, and pocilloporid corals were sam-
pled from 21 (n= 60 colonies) and 27 (n= 62 colonies) of these sites,
respectively. Of these 122 colonies from the AI and CI, 47 and 42 were
genotyped (Mayfield et al., 2015), respectively, and 22 and 23, re-
spectively (from 11 and 14 sites, respectively), were analyzed for the
molecular-physiological response variables (MPRV) discussed below
and in Table 2. A variety of EP (Table 1) were assessed at each of the 60
reefs surveyed to attempt to uncover which factors are most important
in driving 1) physiological differences between coral colonies and 2)
transcriptional variability within samples. As outlined in Table 1, only 9
of the 15 EP assessed were generally considered in the multivariate
statistical analyses (MSA) discussed below; reasons for the exclusion of
the other 6 can be found in Table 1. Likewise, of the 10 MPRV assessed
in each of the 122 sampled colonies, only 7 were generally considered
in the MSA featured herein; reasons for exclusion of the remaining 3
can be found in Table 2.

Since most MSA are highly sensitive to missing data, only those 43
coral samples for which no data were missing were included in the
statistical analyses outlined below; this included 21 and 22 samples
from the AI and CI, respectively. Although the target species was P.
damicornis, P. acuta was synonymized with P. damicornis at the time of
surveying; the two species were not formally distinguished until the
publication of Schmidt-Roach et al. (2014). Likewise, although most
sampled colonies appeared as P. damicornis in situ, such was not always
confirmed upon genotyping (Mayfield et al., 2015), and, of this 43-
sample subset, 1, 6, 8, 11, and 17 were Pocillopora sp. haplotype 8a
(2.3%), P. verrucosa (14%), P. meandrina (18.6%), P. acuta (25.6%), and
P. damicornis (39.5%), respectively. For this reason, and because we
hypothesized that physiological differences may exist between these
closely related species, “host species” was included as an EP (Table 1).
Since only one Pocillopora sp. haplotype 8a colony was genotyped, it
was excluded from the analysis; the resulting final sample size was 42.

2.2. Data analysis overview, PERMANOVA, and PERMDISP

In addition to providing baseline data for an under-surveyed region
of the South Pacific, we were interested in identifying the EP (Table 1)
that are most important in driving variation in the physiological re-
sponse (Table 2) of pocilloporid corals, and a variety of both univariate
and multivariate statistical approaches were employed to achieve this
goal. For all MSA, response variable data were standardized (i.e., con-
verted to z-scores) prior to analysis such that all would be on the same
scale. As discussed in the online appendix, ANOVA, multivariate
ANOVA (MANOVA; Mayfield et al., 2016a), analysis of similarity
(ANOSIM; Mayfield et al., 2016a), recursive partitioning (RP; herein),
and multiple regression (herein) were initially used to analyze the data,
though they were ultimately found to be inappropriate (ANOVA and
MANOVA) or inferior (ANOSIM, RP, and multiple regression) methods
for testing effects of environment on coral physiology. Given such issues
with these parametric approaches, PERMANOVA (permutational
ANOVA of [raw] similarity) was carried out with PRIMER 6 with the
PERMANOVA+ plug-in (Anderson et al., 2008) to test for the effects of
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each of the target EP (Table 1) on the similarity among samples after
first creating a Euclidean distance matrix (EDM) with the standardized
data. Additionally, the PERMDISP feature of PRIMER 6 (Anderson,
2006) was utilized with this same EDM. PERMDISP is a distance-based
test for homogeneity of multivariate dispersions, and we hypothesized
that the dispersion in the coral physiological response might differ
across environmental gradients, particularly ALCC levels. For both si-
milarity-based approaches, an alpha level of 0.05 was set.

2.3. Modeling the coral physiological response with stepwise regression

When dealing with a large number of predictor variables (i.e., the
EP of Table 1), hypothesis-driven approaches such as ANOVA may lead
to type I errors, even when dramatically adjusting the alpha level as in
Mayfield et al. (2016a, 2017a,c; from 0.05 to 0.004). Furthermore,
hypothesis testing is poorly suited for identifying the optimal model for
explaining a dataset, even when a multivariate similarity approach like
PERMANOVA is used (Anderson et al., 2000). For these reasons, in-
formation theory has been increasingly used in ecology (Anderson and
Burnham, 2002), either in isolation, or in conjunction with hypothesis
testing, in order to develop the most appropriate, parsimonious best-fit
model for explaining the behavior of a particular response variable
(Mazerolle, 2006). Information theory is used routinely in coral reef
ecology (Jørgensen et al., 2005) and ichthyology (Conover et al., 2006),
but it has not been widely adopted in coral physiology research (but see
Kenkel et al., 2015), in which hypothesis testing is traditionally more
common (e.g., Mayfield et al., 2013c,d; Putnam et al., 2013; Mayfield
et al., 2014c).

Herein we used an information theory-based stepwise regression
program in JMP® (ver. 13) to select the best-fit model for each of eight
response variables: maximum (max.) colony length, the Symbiodinium
genome copy proportion (GCP), the RNA/DNA ratio, and expression of
five Symbiodinium stress-targeted genes (STGs; Table 2). Backwards
model selection was used such that all EP were initially considered, and
a stopping rule was enacted based on minimizing the “Bayesian in-
formation criterion” (BIC). Finally, a “combine” rule was employed
such that, when necessary to minimize the BIC, certain EP were parti-
tioned heuristically into sub-categories/bins. To depict the stepwise
regression data in graphical form, the relative weight of each EP model
term (when there were multiple) was scaled based on its F statistic such
that the sum of all “strength of effect” scores equaled 100%. For in-
stance, if stepwise regression included two EPs whose F statistics were 2
and 4, the size of the former's bubble (33%) would be half that of the
latter (67%) in Fig. 3.

The aforementioned, information theory-based stepwise regression
analyses sought to identify the EP (or combinations thereof), that best
accounted for variation in each of eight response variables. However,
we were also interested in the suite of EP that best modeled variability
in the multivariate coral response. Therefore, as a distance-based
analog to this information theory+linear modeling analysis, PRIMER's
“DistLM” (distance-based linear modeling; Clarke et al., 2014) program,
was used with the “best” selection procedure and a minimum Akaike's
information criterion (AICc). In other words, the EP(s) best accounting
for between-sample differences in the underlying EDM was/were
identified.

2.4. Outlier analysis

A detailed treatise on identification of outliers in the AI+CI dataset,
which was first presented in Mayfield et al. (2016a), has been sum-
marized in the online appendix. Briefly, the Mahalanobis distance (MD)
was calculated across the seven MPRV to serve as the primary means of
identifying outliers, and those samples with MD values > 7 and whose
heat map scores (HMS; see online appendix for details.) were ≥ 1 were
considered outliers. Briefly, a sample featuring a MPRV with a z-
score > 2 would be given an HMS of 1. To corroborate this outlierTa
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assignment, the principal coordinate from the primary axis of a prin-
cipal coordinates ordination (PCO) analysis carried out by PRIMER 6
was calculated and regressed against the MD. It should be noted that,
because this PCO was carried out with an EDM, it is comparable to the
more commonly employed principal components analysis (PCA). The
MD and PCO1 score are collectively referred to as “multivariate
variability terms” throughout the manuscript. We also calculated a
second (after the HMS) “univariate variability term” known as the
“variability index” (VI), which was first described by Mayfield et al.
(2017a,b, 2018b). This term is simply the standard deviation of the
standardized data across all response variables for an individual coral
biopsy. For instance, if the z-scores for the seven MPRV measured
herein were 1, 2, 3, 4, 5, 6, and 7 for a particular coral sample, its VI
would be 2.2.

We hypothesized that samples with high VI (within-sample varia-
tion) would also tend to be characterized by relatively high MD (be-
tween-sample variation; i.e., a greater distance from the global cen-
troid), and linear regression analysis was used to determine the
significance of this relationship across the 42-sample dataset. We also
regressed the MD against the standardized values of the individual
MPRV in order to determine which response variables were the most

important drivers of a sample being characterized as an outlier. To
confirm the results of this analysis, two approaches were taken. First,
JMP's “predictor screening” program was used to calculate the relative
effects of the MPRV on the MD. Then, partial least squares (PLS) ana-
lysis was used to create a “variable importance plot” (VIP) in which
response variables were scored relative to their predictive influence on
the MD. JMP's recommended VIP threshold of 0.8 was set a priori(i.e.,
MPRV with VIP > 0.8 were considered to best model the MD.). Finally,
multiple nominal logistic regression was used with outlier status (yes
vs. no) as the response variable in order to create a best-fit model
featuring EP as predictors of whether or not a sample would be con-
sidered an outlier. For all MSA, an alpha level of 0.05 was established a
priori.

3. Results

3.1. Environmental variation

The overall variability in several continuous EP can be found in
Fig. 1, and a detailed treatise on the environmental data can be found in
the online appendix. Briefly, a canonical correlation analysis (CCA)

Fig. 1. Contour plots of environmental and outlier frequency data in the Austral Islands (AI) of French Polynesia and the Cook Islands (CI). The sizes of the data
clouds are proportional to the data variability; certain islands in close proximity to each other (e.g., Raivavae and Tubuai in [b-d]) tend to be masked. In other
instances, environmental parameters (EP) were homogeneous within an island, in which case clouds are essentially absent (e.g., salinity [b] at Aitutaki). In [a] only,
the islands have been labeled, and a grey, dotted line has been used to approximate the territorial divide between the CI (left-side) and AI (right-side). For a data-free
map of the AI and CI, please see Mayfield et al. (2015). For a canonical correlation analysis (CCA) plot of the environmental data across islands, please see Fig. A1.
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revealed that the abiotic environment (Table 1) varied significantly
across islands (Fig. A1). For descriptions and images of the 60 survey
sites, please see Mayfield et al. (2015) and http://coralreefdiagnostics.
com/french-polynesia, respectively; the latter website also features
images of all sampled coral colonies, with hyperlinks to 1) data files
(JMP or Excel format) and 2) DNA sequences (hosted on the NCBI
server) overlaid onto the images.

3.2. Variation in coral physiology

Nine response variables (those of Table 2 with the exclusion of
Symbiodinium psI/III mRNA expression) were assessed in each of 42
coral colonies sampled from the AI and CI in order to uncover re-
lationships between coral physiology and environment (Fig. 2). First, a
PCO analysis of these nine response variables was carried out with a
between-response variable EDM in order to uncover the relationships
among them (Fig. 2a). Max. colony length and planar colony SA fell
close to each other in the plot given their collinearity. These size-based
EP were not generally considered in any additional statistical analyses,
as coral colony size was not hypothesized to be indicative of coral
health (i.e., larger colonies are not necessarily healthier than small
ones, although coral physiology indeed differs across colony age/size
[Elahi and Edmunds, 2007]). The Symbiodinium gene mRNAs tended to
cluster together in the plot, whereas the two biological composition

parameters (RNA/DNA ratio and the Symbiodinium GCP) were less si-
milar to each other. The first axis of a PCO carried out with a between-
sample EDM (Fig. 2b) was dominated by the five Symbiodinium genes,
whereas the second and third (not shown; 13%) featured Symbiodinium
density (GCP) and the RNA/DNA as the dominant loading factors, re-
spectively. Furthermore, those samples farther from the core region of
the plot were characterized by larger MD (icon sizes in Fig. 2b are
proportional to their MD.), and the four outliers uncovered (discussed
in more detail below) were found near the plot's perimeter.

To further explore the relationships among 1) the MD, 2) the re-
sponse variables, and 3) three variability terms, 12 scatterplots were
produced (Fig. 2c). Although the MD did not correlate significantly with
the size parameters (Fig. 2c-i-ii) or RNA/DNA (Fig. 2c-iii), it was ne-
gatively associated with the Symbiodinium GCP (Fig. 2c-iv); corals with
lower Symbiodinium density tended to be more different from the
average coral. In contrast, the MD was positively and linearly associated
with expression of the five Symbiodinium STGs (Fig. 2v-ix). The geo-
metric mean calculated across the seven molecular response variables
did not correlate significantly with the MD (Fig. 2c-x), though there was
a strong, positive, linear correlation between the VI and the MD
(Fig. 2c-xi); those samples characterized by the most variability across
the seven MPRV (i.e., high intra-sample variability) also tended to be
the most different from the mean coral (i.e., high sample-centroid dis-
tance). Finally, as is evident from Fig. 2b and c-xii, the MD correlated

Fig. 2. Multivariate analysis of the Austral and Cook Islands dataset. A principal coordinates ordination (PCO) analysis of a between-response variable (RV)
Euclidean distance matrix (EDM) was performed with nine RV [a], and the circles were drawn by eye (i.e., they do not connote statistical clustering.). PCO (instead
using a between-sample EDM) was also used to depict similarity between samples (n = 42) over two dimensions [b], as well as identify 1) outliers (“L;” all four have
been labeled, and the sizes of all 42 sample icons are proportional to their Mahalanobis distances [MD].) and 2) RV best modeling variation in coral physiology (seven
molecular physiological RV only [as red arrows]; see “Biplot ray legend” in upper right corner, in which numbers on left of legend correspond to approximate
positions on a clock.). Vectors (blue) for environmental parameters whose Pearson correlation coefficients (r; against the coordinate axes) were > 0.3 have been
included. The bottom-right legend of [b] also applies to [c], in which the MD has been plotted against each of the nine RV (i-ix), as well as their geometric mean (x),
the variability index (xi), and the PCO primary axis coordinates (PCO1; xii); r2 values of statistically significant associations (p < 0.01) have been underlined, and
shading around the best-fit lines represents 95% confidence. The most aberrantly behaving colony (#88) has been labeled in [b] and certain sub-panels of [c].
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significantly, positively, and linearly with the coordinates of the first
PCO axis (see the online Mendeley data file for exact MD values and
PCO coordinates.).

Both hypothesis testing and information theory approaches were
used to determine the EP that best modeled variation in the physiology
of the sampled coral colonies, and the data have been summarized in
Table 3. The similarity matrix-based PERMANOVA only found host
species to affect similarity among samples (albeit marginally), as is
somewhat evident in the PCO of Fig. 2b. When using an information
theory approach to model multivariate similarity (all seven MPRV)
between samples with PRIMER's DistLM function (Table 3), a model
featuring colony color, salinity, depth, host species, and ALCC resulted
in the minimum AICc of 80 (r2 = 0.30).

For the response variables analyzed individually, the information
theory-based stepwise regression yielded best-fit models whose ad-
justed r2 averaged 0.31, and three EP were included in the average
model (Table 4). The best-fit models generated by stepwise regression
are shown in Table 4, detailed in the online appendix, and the relative
weights (i.e., strength of influence) of the model terms have been
plotted in Fig. 3a-b. When considering only the statistically significant
best-fit model EP terms (Fig. 3b and underlined and capitalized EP in
Table 4), host was found in more models than any other EP (Fig. 3c). In
contrast, exposure and sampling time were not statistically significant
EP in any model; these EP are therefore not depicted in Fig. 3. Tem-
perature was only a significant factor in the best-fit model for the first
PCO axis, which is not shown in Fig. 3a-b. Colony color only featured as
a statistically significant term in the best-fit model for Symbiodinium
hsp40. For a detailed treatise on the stepwise regression analysis, please
consult the online appendix.

3.3. Outlier analysis

By virtue of their MD and HMS, 5 of the 43 samples for which no
data were missing were considered to be outliers; one of these was the
lone Pocillopora sp. haplotype 8a colony sampled and is not considered
further. In general, outliers were characterized by lower Symbiodinium
densities (Fig. 2c-iv), though this difference was not statistically sig-
nificant (student's t-test of outliers vs. non-outliers, p > .05). In con-
trast, outliers expressed higher levels of Symbiodinium hsp90 (3-fold;
Wilcoxon rank-sum test, p < .05), hsp70 (3-fold; Wilcoxon rank-sum
test, p < .01), apx1 (2.5-fold; Wilcoxon rank-sum test, p < .05), and
ubiq-lig (3-fold; Wilcoxon rank-sum test, p < .05). None of the other
response variables differed significantly between outliers and non-out-
liers. Not surprisingly, then, Symbiodinium gene expression contributed
most significantly to the MD, as determined by a predictor screening
analysis (Fig. A2a) and PLS (Fig. A2b). The VI was approximately 2.5-

fold higher in outliers than in non-outliers (Wilcoxon rank-sum test,
p < .01); those samples that demonstrated greater variability across
response variables were also characterized by a greater distance from
the overall mean response centroid (discussed above in the context of
the correlation between the VI and the MD). When performing a step-
wise nominal logistic regression (minimum BIC/forward selection) of
outlier frequency (yes vs. no), a best-fit model (r2 = 0.80; p < .01)
featuring the following EP resulted in the minimum BIC of 28: salinity
(p < .001), host (p= .01), colony color (NS), and ALCC (NS). It is
worth noting that none of these EP in isolation significantly affected
outlier frequency (X2 tests, p > .05). Additional details of the outlier
analysis can be found in the online appendix.

4. Discussion

4.1. Host species effects

The multivariate, distance-based alternative to stepwise regression,
DistLM, included the host term in the best-fit, minimum-AICc model, in
addition to colony color, salinity, depth, and ALCC. Given that these
same EP were generally also found in the individual response variable
stepwise regression models, we conclude that these five EP, in addition
to island, are the most important of all 15 originally assessed in terms of
their influence on coral physiology. Of these six EP, host contributed
most significantly to the variation between colonies (Table 5). Speci-
fically, host was the most important driver of variation for Symbiodi-
nium density (i.e., the GCP), as well as Symbiodinium ubiq-lig and hsp70
mRNA expression. Furthermore, host species was a significant EP in the
best-fit models for two of the three variability terms: MD and VI. It was
also the only EP for which PERMANOVA documented a statistically
significant effect.

Although nearly all corals possessed Symbiodinium of clade C only
(see online Mendeley data file.), it is possible that sub-cladal Symbio-
dinium diversity contributed to the differences in Symbiodinium density
and gene expression among the four predominant host corals genotyped
(P. damicornis, P. acuta, P. verrucosa, and P. meandrina). Unfortunately,
markers commonly used to genotype Symbiodinium (e.g., its2) are in-
tragenomically variable; in a coral biopsy in which many thousands, or
even millions, of Symbiodinium cells may be present, it is therefore not
possible to tease apart intra- from inter-genomic variation (Wilkinson
et al., 2015). Upon the analysis of the growing number of Symbiodinium
genomes (e.g., Shoguchi et al., 2013), it will soon be possible to identify
molecular markers that will allow us to confidently assess Symbiodinium
diversity in complex, endosymbiotic samples such as those obtained
and analyzed herein. Then, it could be known, for instance, whether
differences in physiological properties of the (host) pocilloporid coral

Table 3
Summary of the effects of seven environmental parameters (EP) on the univariate and multivariate coral physiological response. For the univariate (stepwise
regression) and multivariate statistical approaches (MSA; seven molecular-scale response variables only), significantly affected response variables (F-test, p < 0.05)
and multivariate p-values have been included in the cells, respectively, except for the case of distance-based linear modeling (DistLM), in which those EP “included”
in the model characterized by the minimum Akaike information criterion value have instead been inserted. The 1) variability index (VI), 2) Mahalanobis distance
(MD), and 3) principal coordinate ordination (PCO) primary axis (PCO1) values were also treated as response variables in the stepwise regression analysis. Since no
significant differences were uncovered for reef exposure or coral sampling time, these EP have been excluded from the table. ALCC = average live coral cover.
NS = not statistically significant. Sym = Symbiodinium. Temp. = temperature.

Univariate statistical approach Multivariate statistical approaches

EP Stepwise regression (information theory) PERMANOVA DistLM Conclusion(s)

Island Sym hsp90, MD NS Excluded Island featured in best-fit models for MD and Sym hsp90.
ALCC RNA/DNA, MD, Sym GCP NS Included Variance in coral physiology differed across coral cover levels (discussed in text).a

Temp. PCO1 NS Excluded Temp. significantly affected between-sample similarity (principal coordinates).
Salinity Sym apx1 NS Included Salinity influenced Sym apx1 mRNA expression and multivariate distance.
Depth Sym GCP NS Included Depth affected Symbiodinium density and multivariate distance.
Host species Sym GCP, Sym hsp70, Sym ubiq-lig, MD, PCO1, VI 0.04 Included Most significant driver of variation in coral physiology of all nine EP analyzed.
Colony color Sym hsp40 NS Included Colony color only affected Sym hsp40 mRNA expression and multivariate distance.

a Significant PERMDISP effect (p < 0 .05).
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colonies sampled (e.g., tissue thickness and corallite morphology), or,
alternatively, the identity of the Symbiodinium cells in hospite, were
more important contributors to the inter-host variation observed in
algal cell density and gene expression. This observation that Symbiodi-
nium gene expression patterns vary across congeneric host species is
novel and may have implications for predicting how each species will
respond to future environmental change. A more detailed treatise on
molecular plasticity and heterogeneity with respect to acclimation po-
tential (sensu Kenkel and Matz, 2016) can be found below.

4.2. High STG expression levels

The virtual absence of localized anthropogenic influence in the
sparsely populated AI and CI had led us to hypothesize that
Symbiodinium STG expression levels would be lower than in conspecifics
from our field sites in Southern Taiwan (Mayfield et al., 2012a); such
was not confirmed. In fact, the expression levels of Symbiodinium gene
mRNAs were relatively high for all genes (threshold cycle [Ct] = 22–25
for the hsps and ubiq-lig and Ct = 28 ± 0.3 [std. dev. for this and all
error terms henceforth] for apx1). In the case of Symbiodinium hsp90
mRNA expression in particular, mean values (25.1 ± 1.7) were sta-
tistically similar to those of Symbiodinium populations within corals
from heavily impacted reefs of Southern Taiwan (24.8 ± 2.1; Mayfield
et al., 2013a). Expression levels of the other four Symbiodinium STGs
were generally comparable to those of Taiwanese in hospite Symbiodi-
nium (clade C) populations, as well (data not shown).

Although HSPs and ubiq-ligs aid in protein homeostasis and de-
gradation, respectively (Welchman et al., 2005), protein turnover does
not only occur during episodes of environmental stress (Hochachka and
Somero, 2002); rather, it occurs to some degree at all times. Therefore,
constitutively high expression levels of these four genes do not, in and
of themselves, signify that the sampled coral colonies were stressed. It is
also worth noting here that, given their clustering in the between-re-
sponse variable PCO and their relative multicollinearity in the between-
sample PCO, it may be superfluous/redundant to target all five of these
Symbiodinium STGs in future studies. Such collinearity also points to the
utility of PLS, which was employed herein for assessing the relative
influence of response variables on the MD, in analyzing coral-Symbio-
dinium mRNA expression data (in which it is likely that at least some

pairs of genes will co-vary; Mayfield et al., 2014b).
Furthermore, it was recently found that there is no congruency

between mRNA expression and protein concentration in reef corals
(Mayfield et al., 2016c); although gene mRNAs could still potentially
serve as biomarkers (provided that aberrant expression levels ulti-
mately lead to a compromised phenotype), their concentrations cannot
be used to reconstruct cellular physiologies unless protein data are si-
multaneously acquired (Mayfield et al., 2018a). Therefore, it cannot be
currently stated whether, for instance, the expression levels measured
for Symbiodinium apx1, which encodes a protein involved in the oxi-
dative stress response, are actually indicative of baseline levels of re-
active oxygen species formation (which is to be expected in photo-
synthetic organisms [Lesser, 1997; Jones et al., 1998; Lesser, 2006]).
All proteins co-extracted from the samples whose DNAs and RNAs were
analyzed herein have been archived (precipitated in acetone at
−80 °C); concentrations of the respective stress-targeted proteins
should therefore be assessed in the future to determine whether corals
of the AI and CI were simultaneously synthesizing high concentrations
of proteins involved in protein turnover and the stress response.

4.3. Variability in coral response versus mean coral response

As mentioned in the Introduction, simply using absolute gene ex-
pression or protein concentration levels as a proxy for the degree of
stress in an individual coral colony is likely unfounded; because we do
not know what “healthy” concentrations are for any analyte given that
all coral reef research has been undertaken in the post-Industrial era,
how can we then claim that the concentration of any particular bio-
marker is indicative of a decline in coral health in the absence of tank
experiments carried out with the colonies of interest? Unfortunately,
there are no pristine coral reefs left on Earth given the wide-reaching
effects of GCC; for instance, coral reefs of the uninhabited, extremely
remote Chagos Banks (aka British Indian Ocean Territory) are now
bleaching annually, even in the absence of all other anthropogenic
stressors (Sheppard et al., 2017). Additionally, although there is a good
chance that ancient coral DNAs could be recovered such that they might
be sequenced (Baker et al., 2013), RNAs, proteins, and other func-
tionally important molecules will almost surely have degraded in coral
fossils; we are unlikely, then, to ever acquire a knowledge of the cellular

Table 4
Stepwise regression best-fit models. Statistically significant EP (p < .01) have been underlined in all CAPITAL letters, and all error terms
represent standard deviation. The relative weights of the best-fit model environmental parameters (EP) uncovered for each response
variable have been depicted graphically in Fig. 3a-b (in which F statistics have been scaled relative to 100%). adj. = adjusted. BIC=-
Bayesian information criterion. MD = Mahalanobis distance. PCO = principal coordinates ordination. Temp. = temperature. VI = varia-
bility index. *statistically significant F-test p-value for entire model (< 0.05).

Response variable Stepwise regression model terms adj. r2 (BIC)

Physiological response variables
Max. lengtha Host 0.12 (54)⁎

RNA/DNAb ALCC > host > depth 0.44 (328)⁎

Sym densityc HOST > DEPTH ≥ ALCC > color 0.47 (310)⁎

Symbiodinium gene expression
Sym apx1a SALINITY > color > depth > temp. > host > island > alcc 0.37 (127)c

Sym ubiq-ligb HOST > time 0.28 (330)⁎

Sym hsp70a HOST > alcc > time 0.25 (105)⁎

Sym hsp40a COLOR 0.21 (107)⁎

Sym hsp90a ISLAND 0.21 (104)⁎

Variability terms
MDb ISLAND > HOST > alcc 0.40 (326)⁎

PCO (axis 1)b TEMP. ≥ HOST > ALCC > salinity 0.37 (330)⁎

VIa HOST > alcc > island 0.28 (56)⁎

mean adj. r2 0.31 ± 0.11
mean# EP in best-fit model 2.9 ± 1.8

a log-transformed data.
b rank-transformed data.
c used minimum p-value stopping rule and mixed model selection instead of minimum BIC rule with backwards selection.
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concentrations of functionally important macromolecules from corals
whose abiotic environments have not been dramatically altered by
humankind.

Instead, the variability among response variables might actually be
of greater interest with respect to gauging coral performance than the
mean concentrations of the respective analytes (sensu Kovács et al.,
2014). Herein we documented a statistically significant, positive cor-
relation between the MD and the VI. This means that those coral co-
lonies that demonstrated the most variation among response variables
also tended to be those whose mean physiological performance de-
viated most from the norm (i.e., outliers). It is currently premature,
however, to speculate whether these outliers characterized by high MD
and VI were of diminished resilience compared to those whose phy-
siology approximated that of the average colony. In humans, high
variability across genes is a hallmark of many cancers (Cleophas et al.,
2006; Han et al., 2016; Sharma et al., 2018), nearly all of which result
from a loss of transcriptional control. In corals, such transcriptional
“noise” could therefore reflect a deviation from homeostasis that may
be indicative of compromised health; alternatively, the capacity to ex-
hibit large shifts in molecular biology could simply be construed as
evidence of phenotypic plasticity (Kenkel and Matz, 2016) and there-
fore signify an advantageous property of these corals. Whether or not
high within-sample variation across response variables is prognostic of
stress or resilience should, then, be directly tested in future experiments
carried out either in the laboratory or on the coral reef.

Regardless of the ultimate fate of these colonies, the transcriptional
variation in particular may attest to the degree of genetic material
available for selection (Parkinson et al., 2018). We therefore further
advocate that, when such outliers are uncovered within a dataset, they
not be discarded; although their inclusion may thwart the ability to
detect a significant difference in statistical models, their exclusion will
result in the loss of information about colonies that actually be most
interesting from a physiological perspective. Indeed, we recommend
the MD-based “aberrancy detection system” outlined herein be used as
a means of generating a list of coral colonies to monitor most closely.
For individuals working on transcriptomic and proteomic technologies
(e.g., Mayfield et al., 2016b), this outlier selection approach may allow
for the identification of the most informative subset of samples in the
all-too-common event in which it is prohibitively expensive to analyze
all samples generated in an experiment (or collected during a field
season).

Only return visits to these same study sites will allow us to con-
clusively determine whether those outliers with high MD and varia-
bility across gene expression, in particular, are more or less likely to
succumb to environmental change, and multivariate “control charts”
(Anderson and Thompson, 2004) could be used to detect significant
deviations from the molecular-physiological baseline established in this
work. Future trips to these remote, South Pacific field sites will also
allow us to determine whether the fact that the mean dispersion (as

Fig. 3. Environmental parameters (EP) included in best-fit models for coral
molecular-physiological response variables generated by stepwise regression. In
[a], all EP for each model have been shown, whereas in [b], only statistically
significant (individual F-test, p < .01) EP have been included. In both, bubble
size is proportional to the strength of effect for each EP included in the model
(i.e., larger bubbles represent a stronger effect of the respective EP; see text for
details of calculation). The breakdown of the 15 significant EP identified by
stepwise regression has been shown as a pie graph in [c], in which case the
values inside the wedges reflect the number of times each of the seven EP
featured was included as a significant term in a best-fit model (Table 4). Please
note that temperature (temp.) was included because it was found to be a sig-
nificant term in the best-fit model of the principal coordinates ordination (PCO)
axis 1 (PCO1) coordinate values, which was not depicted in [a-b]; the three
significant EP found in the PCO1 model (Table 4) account for the difference in
significant EP found in [b] (n= 12) and [c] (n= 15).

Table 5
Major conclusions from the Austral Islands-Cook Islands pocilloporid coral dataset. Please see Fig. A2c for a plot of the dispersion data across average live coral cover
(ALCC) levels.

Finding Statistical approach(es) supporting
observation

Reference

P. damicornis is more likely to be found at depths > 15 m and in higher coral cover areas relative to P.
acuta.

1. X2 test
2. nominal logistic regression

Mayfield et al. (2015)

Pocillopora verrucosa colonies from Maria Atoll (Austral Islands) differ from other colonies, mainly by virtue
of their higher Symbiodinium hsp90 mRNA expression levels.

MANOVA Mayfield et al. (2016a)

Five of the forty-two colonies analyzed in detail (12%) are outliers. 1. Mahalanobis distance
2. HMS
3. PCO

Mayfield et al. (2016a)

Host species is the most important driver of variation in coral physiology in this 42-sample dataset. 1. PERMANOVA
2. DistLM
3. stepwise regression

Herein

Samples with high Mahalanobis distances (i.e., outliers) are characterized by relatively higher inter-
response variable variation (i.e., high variability indices).

1. Outlier analysis
2. Multiple correlation
3. Linear regression

Herein

Significant effect of ALCC on dispersion of coral response. PERMDISP Herein
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determined by PERMDISP; Fig. A2c) was highest in sites with 20–30%
coral cover (Table 5) signifies that those corals of the low ALCC sites are
more likely to display aberrant behavior (as had been hypothesized
previously by Mayfield et al., 2017a, 2017b). In fact, mean multivariate
data dispersion of the lowest coral cover sites (10–20%) was sig-
nificantly lower than for the 20–30% coral cover sites; clearly, then,
there is not a simple linear relationship between coral cover and inter/
intra-sample data dispersion. Furthermore, there was no relationship
between ALCC and the MD, nor were outliers more frequently found on
reefs with low coral cover. This means that the use of coral cover alone
as a proxy for the mean behavior of a reef's resident corals may, as
hypothesized by Wooldridge (2014), be unjustified.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.seares.2019.01.003.
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