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Abstract 
    Coral reef ecosystems are threatened by an onslaught of anthropogenic 
stressors, most notably global climate change (GCC); indeed, no regions have 
been spared from our wide-ranging human impact. Consequently, there have 
been urgent pushes to 1) model how marine organisms will respond to changes in 
their environments and 2) make data-driven predictions as to which populations 
are most stress sensitive. Given our recently elevated understanding of how GCC 
affects reef corals, we are now in a position in which it may be possible to make 
projections as to which corals are most susceptible to GCC, as well as which will 
demonstrate resilience. Herein we explore the potential for artificial 
intelligence-based approaches to generate models that can accurately predict 
coral stress susceptibility (CSS). Specifically, we advocate that coral reef-focused 
partial least squares and neural networking algorithms should be developed, with 
their prognostic capability then field-tested at sites spanning a gradient of human 
impact and ecological resilience in the high-biodiversity “Coral Triangle.” If the 
developed actuarial models are characterized by the analytical capacity to 
forecast CSS, we will possess one means of identifying reefs that should be 
prioritized for conservation (i.e., coral reef “triage”). 
 
Key words: artificial intelligence, coral reefs, global climate change, molecular 
diagnostics, stress biology 
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Introduction 
Coral reefs harbor immense 

biodiversity and provide a wealth of 
benefits to humankind (e.g., as nurseries 
for numerous commercial fish species). 
Unfortunately, these ecosystems are 
threatened by myriad anthropogenic 
stressors (Mayfield and Gates, 2007), 
from global-scale impacts like climate 
change (Hoegh-Guldberg et al., 2007) to 
local ones like seawater pollution (Huang 
et al., 2011). The elevated temperatures 
associated with global climate change 
(GCC) are especially concerning since 
most corals live near the upper threshold 
of their thermotolerance (Brown, 1997). 
Even increases in temperature of only 1ºC 
above the summer mean can cause a 
collapse of the mutualistic relationship 
between reef-building scleractinians and 
the photosynthetically active 
dinoflagellates (family Symbiodinaceae) 
that inhabit their gastroderms; this 
phenomenon is known as “bleaching” due 
to the paling of the coral tissues (Gates, 
1990). Since corals rely on the energy 
obtained from Symbiodinaceae-fixed 
carbon to not only meet their metabolic 
needs, but also to accrete the calcium 
carbonate skeletons that serve as the 
structural foundation of coral reefs, 
bleaching can lead to both coral death and 
reef degradation.  

Upon having carried out a plethora of 

controlled laboratory studies with several 
Indo-Pacific coral species, including 
Seriatopora hystrix (e.g., Mayfield et al., 
2011) and Pocillopora acuta/damicornis 
(Table 1), we have developed an 
understanding of the responses of 
scleractinians to GCC scenarios (Mayfield 
et al. 2013a-b, 2019b). In fact, our 
knowledge has finally advanced to the 
point where it would be fruitful to attempt 
to use the explanatory data acquired 
during such tank studies to predict coral 
behavior in situ; if we could use data from 
laboratory exposures (sensu Table 1) 
and/or published field datasets on coral 
physiology (e.g., Mayfield et al., 2015, 
2016a) to make predictions as to how 
conspecifics would respond to 
environmental heterogeneity in other 
locations (or at the same site at later dates), 
then we would likewise possess the 
capacity to determine which reefs (and/or 
coral populations) are most likely to 
persist in the face of GCC.  

Although it is true that many corals 
bleach when exposed to elevated 
temperatures over prolonged durations, 
others have demonstrated a marked 
capacity for resilience (Barshis et al., 
2013; Krueger et al., 2017), and numerous 
investigators around the globe are 
currently attempting to elucidate the 
genetic basis of such thermotolerance. 
Indeed, we do not yet even have a grasp 
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of the cellular pathways underlying coral 
bleaching (Jones et al., 1998). In an ideal 
world, we would carefully elucidate the 
molecular underpinnings of bleaching 
resilience, or lack thereof, in replicated 
coral populations from diverse locations 
across the globe. Alongside such studies, 
we would model the molecular 
mechanisms underlying coral bleaching at 
the single-cell level, and such experiments 
would be repeated with corals sampled 
from reef sites spanning large-scale 
latitudinal gradients that are either 1) 
bleaching-prone or 2) bleaching resistant. 
Several years may be required to acquire 
such data, and, unfortunately, time is not 
on our side given the rate at which 
seawater temperatures are rising. We 
therefore propose herein that we not only 
continue to remedy these deficiencies in 
our knowledge of coral bleaching and the 
coral stress response, but also attempt to 
use the data already in hand to make 
predictions about future coral 
physiological behavior. We present one 
such approach for doing so in the 
following paragraph, with details found 
further on in the article. 

Upon analyzing the “proteomes” 
(population of all synthesized proteins) of 
corals that resisted bleaching (Table 
1-experiment [exp.]#1), as well as those 
that instead succumbed to 
high-temperature stress and bleached 

(Table 1-exp.#2), we would possess the 
capacity to develop both “bottom-up” 
(molecules=>physiology) and “top-down” 
(environment=>physiology) predictive 
models for gauging future coral 
performance in situ using data from not 
only the aforementioned GCC 
manipulation studies (Table 1) carried out 
at the National Museum of Marine 
Biology and Aquarium’s (NMMBA, 
Taiwan) state-of-the-art coral reef 
mesocosm facility (Liu et al., 2009), but 
also from the most wide-ranging coral 
reef survey ever undertaken: the Khaled 
bin Sultan Living Oceans Foundation’s 
“Global Reef Expedition” (GRE; see 
Mayfield et al., 2017a-c for details.). 
Upon incorporating all environmental and 
coral molecular-physiological data 
acquired during such studies into software 
packages like JMP® Pro (Cary, NC, USA; 
www.jmp.com), artificial intelligence 
(AI)-based partial least squares (PLS) and 
neural networking (NN) models could be 
developed, with the predictive capacity of 
the resulting bottom-up and top-down 
algorithms field tested at well-studied reef 
sites in the high-biodiversity “Coral 
Triangle” (not limited to those four we 
have regularly studied+surveyed in 
Southern Taiwan that differ dramatically 
in 1) oceanography and 2) the 
environmental resilience of the resident 
coral communities; Fig. 1a-b). If AI can 
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be used to identify coral colonies, or coral 
reefs in the case of the top-down model, 
that are markedly stress sensitive prior to 
visible, late-stage manifestations of coral 
health decline, then managers could be 
alerted such that they could mitigate 
local-scale stressors (e.g., overfishing) 
 
 
 
Fig. 1. Map of Taiwanese field sites. 

Taiwan’s location at the 
northern-most region of the 
“Coral Triangle” (a) has been 
expanded in (b) to show the study 
area in more detail. Nanwan Bay, 
where the “Outlet” and Houbihu 
are located, is characterized by 
summer upwelling of cold, 
deep-ocean seawater (Mayfield et 
al., 2012a); corals there 
consequently have special 
adaptations for accommodating 
not only elevated (see description 
for Outlet elsewhere.), but also 
highly variable, temperature 
regimes (22-29ºC over a day; see 
temperature profile insets.). In 
contrast, the two Taiwan Strait 
sites are characterized by a more 
typical coral reef temperature 
profile (22-29ºC over a calendar 
year), nor are these corals 
routinely exposed to dramatically 
elevated seawater temperatures; 
they may, then, be more 
susceptible to environmental 
change.  

 
 

in order to promote coral resilience and 
potentially thwart bleaching. This would 
further enable “coral reef triage,” or else a 
system by which reefs could be prioritized 
for conservation efforts. We now detail all 
ideas/steps addressed in this paragraph.  
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Goals and objectives 
To gauge the coral response to 

environmental change using AI, two 
different models will be built using a 
NN/machine learning approach in 
conjunction with PLS. In the first model 
(Aim I-referred to as “bottom-up” since it 
will utilize molecular information 
[“bottom”] to make physiological [“up”] 
conjectures), the predictors will be 
biomarker proteins uncovered from 
proteomic analysis of experimentally 
stressed aquarium samples (Table 
1-exps.#1-2; described in detail below). 
The coral response will be binomial: 
stressed (i.e., bleaching-prone) vs. 
unstressed (bleaching-resistant). PLS and 
NN analyses are particularly well suited 
for these sorts of “omics” analyses, in 
which the concentrations of thousands of 
proteins are quantified simultaneously, 
and both analytical techniques permit 
response variable reduction to where only 
those proteins whose concentrations are 
tightly linked with coral health decline 
will be incorporated into the final training 
models. PLS, in particular, is also adept at 
handling those datasets featuring a high 
degree of collinearity, such as all coral 
gene expression datasets characterized to 
date (e.g., Mayfield et al., 2014d, 2016c). 
Other attributes of these modeling 
techniques are highlighted below.  

We will also build PLS+NN models 

in an “ecosystem (‘top’) to physiology 
(‘down’)” direction (Aim II); instead of 
using molecular data to make inferences 
about future declines in coral performance 
(sensu Aim I), we will exploit reef coral 
and coral reef datasets to verify whether 
we can use aquarium simulation and 
environmental data, respectively, to 
predict which corals and reefs, 
respectively, will be most stress prone. 
The first data source will be our extensive 
series of GCC simulation studies carried 
out with P. acuta at NMMBA (Table 1). 
Secondly, data from the GRE (Fig. 2) will 
be incorporated; as P. acuta was sampled 
at hundreds of reefs across the 
Indo-Pacific as part of the GRE, we have 
the opportunity to identify the 
environmental parameters (EP) that are 
most influential in driving variation in 
coral physiology when combining these 
GRE data with those of the controlled 
GCC simulations carried out in Taiwan. 
These EP (i.e., the models’ predictors) 
include, but are not limited to, biotic 
parameters like coral cover, invertebrate 
diversity, and algal abundance, and abiotic 
parameters like temperature and salinity 
(see Fig. 3 and Mayfield et al., 2019a for 
details.). The population densities of the 
settlements nearest the GRE field sites 
will also be included in the models to 
determine whether reefs nearby human 
habitations are more stress-sensitive than 
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data summary
Country Notes Environmental 

data
Coral physiological 
data

Coral 
molecular data

Deliverables (to date)

Taiwan Efforts ongoing ✓ ✓ ✓ Manuscriptsa-b

French Polynesia ✓ ✓ ✓ Manuscriptsa

Fiji ✓ ✓ ✓ Manuscripta

Tonga ✓ ✓ ✓ Manuscripta

New Caledonia ✓ ✓ ✓ Manuscripta-b

Australia (GBR) No samples taken Manuscripta

Solomon Islands ✓ ✓ ✓ Data not yet analyzed
Palau ✓ ✓ ✓ Data not yet analyzed
Chagos/BIOT ✓ ✓ in prep. Data not yet acquired
Maldives ✓ ✓ in prep. Field report only
Philippines Grant under review Preliminary data

Indonesia Grant under review Survey data
aData analyzed (somewhat) sophomorically.       bOnly a portion of the dataset was analyzed.

remote ones; preliminarily, the opposite 
appears to be true (healthy corals are more 
likely to be found in marginalized areas.). 
Although a variety of both physiological 
and molecular response variables were 

assessed in corals of these experiments 
and field surveys (Fig. 4), there will be a 
particular focus on those PLS+NN models 
that best predict, more simply, coral 
survival.  

Fig. 2. A summary of data acquired during the Khaled bin Sultan Living Ocean 
Foundation’s “Global Reef Expedition” (GRE), alongside an inset featuring a 
dissecting microscope image of the model reef-building coral Pocillopora acuta. 
Only the Indo-Pacific leg of the GRE has been depicted in the inset map. 
“Deliverables” (right-most column) correspond to coral molecular-physiological 
data only; for most countries/regions, ecological data and general field reports 
have already been published on www.livingoceansfoundation.org. Fulbright 
(USA) funds have been awarded to ABM to continue his coral diagnostics 
research in Southern Taiwan in 2020. BIOT=British Indian Ocean Territory. 
GBR=Great Barrier Reef.  
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Fig. 3. An example of a neural network (NN) featuring coral reef environmental data (left 
side) and reef coral response variables (right side). In the case of this 3-node NN 
example, the predictive capacity of the model was <30% due to having trained it 
with a dataset featuring only 70 samples. “z-scores” refer to standardized data: 
(value-mean)/standard deviation. ALCC=average live coral cover. GCP=genome 
copy proportion. PAR=photosynthetically active radiation. Sym=Symbiodiniaceae 
dinoflagellates. Abbreviations for the gene mRNAs (hsp90, apx1, rbcL, ubiq-lig, 
zifl1l, gfp-cp, cu-n-sod, and ca) can be found in references cited throughout the 
manuscript.  
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Table 1. G
lobal clim

ate change m
anipulation studies carried out at Taiw

an’s N
ational M

useum
 of M

arine B
iology and A

quarium
. 

In m
ost cases, Pocillopora acuta w

as inadvertently classified as Pocillopora dam
icornis in the published m

anuscripts. It is w
orth 

noting that ocean acidification (i.e., elevated carbon dioxide partial pressures [pC
O

2 ]) did not adversely affect corals in any 
experim

ent (exp.). O
nly corals exposed to 31.5°C

 for several w
eeks (exp.#2) bleached. In the com

ing year, w
e propose to undertake 

proteom
ic exam

inations of sam
ples highlighted in yellow

 (exps.#1-2 [n=12 &
 18, respectively] and exps.#3-8 [n=10 for each exp; 

60 sam
ples in total]). Table abbreviations: N

A
=not applicable. S. hystrix=Seriatopora hystrix. Trans-gen=trans-generational 

(adults=>larvae). 

 

Target 
species 

L
ife 

history 
stage 

Tem
perature 

treatm
ent (°C

) 
H

igh pC
O

2 
(ppm

) 
Salinity 
effects 
tested? 

L
ight 

effects 
tested? 

N
utrient 

effects 
tested? 

Tim
e-scale 

A
cclim

a-tion? 
R

eference(s) 

S. hystrix 
adult 

27 vs. 30 
N

A
 

no 
no 

no 
hours 

yes 
M

ayfield et al., 2011, 2014b 
S. hystrix 

adult 
26 vs. 23-29 over 
6-hr 

N
A

 
no 

no 
no 

days 
yes 

M
ayfield et al., 2012a, 2013c, 

2014b, 2016b-c, 2018a, 2019a-b 
P. acuta 

adult 
N

A
 

N
A

 
no 

yes 
no 

hours 
yes 

M
ayfield et al., 2010, 2012b 

P. acuta 
adult 

N
A

 
N

A
 

yes 
no 

no 
hours 

yes 
M

ayfield et al., 2013d 
P. acuta 

larvae 
26 vs. 29 

415 vs. 635 
no 

no 
no 

days 
yes 

Putnam
 et al., 2013 

P. acuta- 
   exp. 1 

adult 
26.5 vs. 29.7 

N
A

 
no 

no 
no 

m
onths 

yes 
M

ayfield et al., 2013b, 2014d, 
2018b 

P. acuta- 
   exp. 2 

adult 
31.5-sustained 

N
A

 
no 

no 
no 

w
eeks 

no-bleached 
M

ayfield et al., 2013a, 2014a 

P. acuta 
   exp. 3 

adult 
26 vs. 29 

415 vs. 850 
no 

no 
no 

w
eeks 

yes 
Putnam

, M
ayfield, et al., in prep. 

P. acuta 
adult 

31.5-return to 
am

bient at night 
N

A
 

no 
no 

no 
w

eeks 
yes 

M
ayfield et al., 2013a 

P. acuta 
   exp. 4 

adult 
25 

400 vs. 
1,000 

no 
no 

no 
m

onths 
yes 

Liu, M
ayfield, et al., in prep. 

S. hystrix 
adult 

25 
400 vs. 
1,000 

no 
no 

no 
m

onths 
yes 

Liu, M
ayfield, et al., in prep. 

P. acuta 
   exp. 5 

adult 
25, 28, or 31 

400 vs. 800 
no 

no 
yes 

m
onths 

yes 
Liu et al., in press 

P. acuta 
   exp. 6 

adult 
26 vs. 29.5 

N
A

 
no 

no 
no 

m
onths 

yes 
M

cRae, M
ayfield, et al., in prep.(a) 

P. acuta 
   exp. 7 

adult 
26 vs. 32 

N
A

 
no 

no 
no 

hours 
yes 

M
cRae, M

ayfield, et al., in prep.(b) 

P. acuta 
   exp. 8 

trans-gen 
26 vs. 30 

N
A

 
no 

no 
no 

m
onths 

yes 
M

cRae, M
ayfield, et al., in prep.(c) 
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To determine the predictive capacity 
of the bottom-up and top-down models 
(Aim III), we will field-test them at four 
study sites in Southern Taiwan (Fig. 1b): 
Wanlitong and Houwan in the Taiwan 
Strait and Houbihu and “Outlet” in 
Nanwan Bay. The latter site is named such 
due to its location at the outlet where the 
thermal effluent from a nearby nuclear 
power plant enters the ocean; seawater 
temperatures there can reach 35ºC, yet the 
coral communities are thriving (see the 
caption for Fig. 1 for additional details.). 
We have been 1) sampling tagged coral 
colonies and 2) collecting environmental 
data from these sites for several years, and 
we will use protein biomarker 
concentration data and field 
environmental data, respectively, acquired 
over the course of 2020 to feed the 
bottom-up and top-down models, 
respectively. If the former and latter 
models can predict which coral colonies 
and reef sites, respectively, are most 
bleaching prone prior to future, 
high-temperature, field seasons, then we 
will have validated the capacity to use 
such computational approaches to 
prioritize reefs for targeted, proactive, and 
“triaged” management. Details of this 
AI+molecular biotechnological approach 
have been outlined below. 
 
 

Methodological details 
Aim I-bottom-up model training. 

SCIEX’s “isobaric tags for relative and 
absolute quantification” (iTRAQ) 
reagents will be used to sequence and 
profile the proteomes of the following 30 
P. acuta samples with a Q Exactive™ 
(Thermo-Fisher) mass spectrometer (MS): 
1) 3 samples maintained at control 
temperature+3 sub-lethally bleached 
samples at each of three sampling times (1, 
7, & 14 days; exp.#2 of Table 1; n=18) 
and 2) 3 samples maintained at control 
temperature+3 samples that resisted 
high-temperature bleaching (30°C) at each 
of two sampling times (2 and 36 weeks [9 
months]; exp.#1 of Table 1; n=12). The 
protein concentration data from the 
sub-lethally stressed samples of exp.#2 
will be compared to experimental controls, 
and the differentially concentrated 
proteins uncovered will be used to train 
the bottom-up PLS+NN model. Corals of 
exp.#1 instead acclimated to high 
temperatures, and so the resulting data 
will be used to better understand the 
molecular pathways underlying such 
long-term, high-temperature acclimation. 

Aim II-top-down model training. 
Although the majority of samples from 
the GCC simulation studies of Table 1, 
which will be used, in part, to train the 
top-down PLS+NN model, have been 
analyzed for an array of physiological- 
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and molecular-scale response variables 
(Fig. 4), we will further profile the 
proteomes of P. acuta samples from 
several other experiments listed in Table 1 
(see table caption for details; n=60 in 
total). Furthermore, we have processed 
the majority of the coral samples from the 
GRE (Fig. 2), whose data will be used 
alongside the GCC simulation data for the 
top-down model training; of note, we 
have not yet extracted macromolecules 
those coral samples from the remote 
Chagos Archipelago (also known as the 
“British Indian Ocean Territory”). As 
corals of this uninhabited region of the 
Indian Ocean are affected only by GCC 
(and no other anthropogenic stressors), 
these samples represent some of the most 
important coral samples ever collected 
and will be critical in the development of 
models seeking to elucidate 
environmental effects on corals. We will 
profile the proteomes of 12 such samples 
in 2020.  

Aim III-field testing of the bottom-up 
and top-down predictive models. Upon 
generating the bottom-up (protein 
biomarker) and top-down (GCC+GRE 
eco-physiological datasets) PLS+NN 
models, we will test their predictive 
capacity in situ.  

We have been sampling corals from 
two of our four study sites (Wanlitong 
[hypothetically bleaching-susceptible] and 

Outlet [hypothetically bleaching-tolerant]; 
Fig. 1b) since 2017 and will continue to 
do so at quarterly intervals over the course 
of 2020 and beyond. To validate the 
predictive capacity of the bottom-up 
model, protein biomarker concentrations 
will be measured in corals (n=48; detailed 
below) sampled from these two sites (with 
corals of Houwan and Houbihu analyzed, 
as well, if funding permits), and 
biomarker signatures will be fed into the 
bottom-up model to predict which 
colonies will bleach as temperatures rise 
over the course of the 2020 and 2021 
summers. As a more simplistic, 
similarity-based approach, we will 
compare the protein profiles of 
field-sampled P. acuta colonies to those of 
the GCC experiments of Table 1 using 
permutational analysis of variance 
(PERMANOVA; PRIMER ver. 7). This 
multivariate statistical approach will allow 
us to visualize, using multi-dimensional 
scaling, and quantify (with 
PERMANOVA) whether the overall 
protein profiles of the field colonies are 
more similar to those of 
bleaching-tolerant (exp.#1) or 
bleaching-prone (exp.#2) corals. 

Simultaneously, the predictive 
capacity of the top-down approach will be 
verified by monitoring the EP determined 
by the PLS+NN model to be most 
important in gauging the coral response at 
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all four field sites (Fig. 1b); upon 
inputting the field environmental data into 
the models, we will rank the four sites in 
terms of bleaching susceptibility and 
monitor the condition of the corals on the 
reefs to determine if those sites predicted 
to be most bleaching-prone indeed bleach 
prior to (or more severely than) those reef  

sites predicted to be more resilient. In the 
event that the predictive capacity of both 
model types is verified, the cheaper, 
top-down approach will be promoted 
given that, unlike the bottom-up approach, 
it requires neither expensive 
instrumentation (e.g., MS) nor highly 
trained personnel. 

Fig. 4. Pocillopora acuta over a variety of biological scales and the molecular protocol 
routinely used to gauge its health. Protein biomarkers uncovered from analysis of 
samples of Aim I will be incorporated into a miniaturized microfluidics chip such 
that coral health can be ascertained while on the diving vessel, not days (or weeks) 
later in the laboratory. MS=mass spectrometry. qPCR= real-time PCR.  
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Molecular approaches. There is no 
correlation between gene expression and 
protein concentration in corals or their 
endosymbiotic dinoflagellates (Mayfield 
et al., 2018a-b). As such, widespread 
transcriptome profiling efforts by coral 
biologists (our own included) have not 
greatly improved our understanding of the 
coral response to GCC. Are we to develop 
proactive, pre-bleaching coral health 
assessment biomarkers and models, we 
instead require quantitative coral protein 
concentration data. By using iTRAQ 
protein labeling in conjunction with MS  
and customized bioinformatic scripts 
(known as "MS-SCAN") implemented on 
our P. acuta transcriptome+proteome 
server 
(http://symbiont.iis.sinica.edu.tw/coral_pd
ltte/static/html/index.html#home), we 
could acquire such data and determine 
which proteins are involved in coral 
bleaching (exp.#2 of Table 1); those 
proteins only synthesized by corals that 
ultimately bleach will be used to train the 
bottom-up predictive models described 
elsewhere. 

Molecular approaches-detailed. For 
all aims, we will use a series of molecular 
protocols developed over the past decade 
for work with reef-building 
coral-Symbiodinaceae dinoflagellate 
endosymbioses (e.g., Mayfield et al., 2010, 
2012b). RNAs, DNAs, and proteins will 

be extracted with TRIzol™ from 50-mg 
biopsies from each sampled P. acuta (Figs. 
1 and 4), and the RNAs will be assayed 
for expression of several target genes with 
real-time quantitative PCR (qPCR) as 
described by Mayfield et al. (2013d, 
2014b-c). Furthermore, qPCR assays for 
genes expressed only by 
temperature-stressed samples are 
currently being designed. Next generation 
sequencing (NGS)-based transcriptome 
profiling (i.e., RNA-Seq) will also be 
undertaken with a subset of samples from 
Aims I-II using an Illumina platform.  

Although, as mentioned above, gene 
expression cannot be used to make 
physiological inferences about 
coral-Symbiodinaceae dinoflagellate 
“holobionts” (host+endosymbionts), 
mRNA-level data can be used to identify 
corals displaying aberrant behavior (Fig. 
5); specifically, those coral colonies 
identified as outliers based on a suite of 
multivariate statistical approaches 
(Mayfield, 2016), most importantly the 
Mahalanobis distance (a multivariate 
equivalent of the standard deviation) will 
be targeted for proteome profiling as 
described below; given the prohibitive 
expense of profiling the proteomes 
(~$150/sample) of all ~150 coral biopsies 
proposed to be generated across all three 
aims, we intend to first employ this 
previously developed “aberrancy 
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detection” approach to screen the 
collective sample set for those coral 
biopsies that are most likely to be stressed 
(see Fig. 5 for a representative output of 
this analysis.). This mRNA focus is due in 
part to the ease of carrying out qPCR, as 
well as its low expense, relative to 
proteome profiling (though the latter is 
rapidly dropping in price). Furthermore, 
we have found that the variability across 
response variables, rather than the mean 
values of each, is actually a better 
testament to the degree of stress within 
coral cells (Mayfield et al., 2019b). 

The DNAs co-extracted from the 
same coral biopsies from which RNAs 
were isolated will be used for four 
different purposes (Fig. 4). First, an 
RNA/DNA ratio will be calculated to 
estimate levels of total gene transcription. 
The DNAs will also be used to 1) estimate 
Symbiodinaceae dinoflagellate density by 
calculating the “genome copy proportion” 
(sensu Putnam et al., 2013) and 2) 
genotype the host corals (Mayfield et al., 
2018c), and 3) their in hospite 
dinoflagellate populations (sensu Correa 
et al., 2008). Next, proteins will be 1) 
extracted from the same coral biopsies 
from which RNAs and DNAs were 
isolated (sensu Mayfield et al., 2014c), 2) 
purified (sensu Mayfield et al., 2016b), 
and 3) labeled with iTRAQ reagents such 
that up to eight coral protein samples can 

be analyzed simultaneously by 
nano-liquid chromatography (nano-LC) 
followed by MS. Instead of identifying 
differentially concentrated protein spots 
from 2-dimensional (2D) protein gels (the 
original proteomics approach), which is 
subjective and results in semi-quantitative 
data, this iTRAQ-nano-LC-MS/MS 
approach sequences all proteins 
synthesized by each sample in a manner 
analogous to RNA-Seq and provides 
spectral data that can be used to extract 
quantitative information on their cellular 
concentrations.  

Bioinformatics approaches will then 
be used to uncover those proteins 
uniquely translated by samples of one 
treatment and not the other. For Aim I 
there will be a particular focus on proteins 
synthesized only by samples experiencing 
temperature stress (i.e., “core bleaching 
proteins” [CBPs]). A coral-customized 
proteomic script (“MS-SCAN”) will be 
used to characterize the sequenced 
proteins upon uploading the MS data files 
(.MGF) onto our coral 
transcriptome+proteome server 
(http://symbiont.iis.sinica.edu.tw/coral_pd
ltte/static/html/index.html#home); this 
interactive coral bioinformatics 
resource/repository has been described in 
detail by Mayfield et al. (2014d). We can 
identify the CBPs the same day we 
receive the data files from the proteomics 
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facility, allowing for their rapid 
characterization. In addition to these 
RNA-, DNA-, and protein-level response 
variables (Figs. 4 and 6), several 
physiological indices of performance will 
also be assessed in experimental coral 
specimens from all aims. Please see our 
prior publications for examples, but these 

include (non-exhaustively) growth, 
Symbiodinaceae photosynthetic efficiency 
(sensu Mayfield et al., 2013c), and 
chlorophyll content (sensu Mayfield et al., 
2012a), gastroderm/epiderm ratio (sensu 
Mayfield et al., 2013b), and reproductive 
output.  

Modeling approaches. Although  

Fig. 5. The results of an “aberrancy detection system” developed for corals of Fiji’s (“F”) 
Lau Archipelago (Mayfield et al., 2017b). Briefly, the four outer wedges 
correspond to coral+symbiont physiological response axes, with the inner circle 
reflecting their average. The degree of aberrancy is indicated by color, with red 
being reserved for corals demonstrating the most atypical behavior. The HMS 
corresponds to the number of response variables characterized by values >2 
standard deviations above the mean (i.e., z-score>2). For instance, if gene 
expression level z-scores of 1, 1.5, and 3 were obtained for a particular coral 
sample, its HMS would be 1.  
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Gene expression (real-time PCR & next generation sequencing)

Proteome profiling (nano-liquid chromatography-mass spectrometry)
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Fig. 6. A dissecting microscope image of the model coral Pocillopora acuta and four 
approaches for generating health-indicative biomarkers. Each polyp is ~1 mm in 
diameter. HPLC=high-performance (or pressure) liquid chromatography, 
NMR=nuclear magnetic resonance imaging, SEM=scanning electron microscopy, 
TEM= transmission electron microscopy, and TLC=thin-layer chromatography. 
Proteome profiling via nano-liquid chromatography and mass spectrometry is 
typically preceded by a labeling approach, such as the iTRAQ method outlined 
herein (“tandem mass tags” [TMT] being the competing technology).  
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multiple regression and its various 
incarnations (e.g., stepwise regression) 
can theoretically handle large, complex 
environmental datasets (such as those 
proposed to be analyzed herein), the high 
collinearity among response variables (a 
hallmark of all reef-building coral 
molecular datasets; see above.) leads to 
models that lack robustness. For this 
reason, statisticians have been making a 
strong case for molecular physiologists to 
instead employ PLS (Cox and Gaudard, 
2013), a predictive modeling approach 
that can be used when there are more 
response variables than samples (an issue 
with all “omic” analyses, regardless of 
target species), as well as when there is a 
high degree of collinearity between 
response variables. Given these attributes, 
PLS appears to lend itself well to the 
assessment of coral reef data; not only 
does this algorithm attempt to model the 
response variable data (y) in such datasets, 
but it also designs parsimonious, best-fit 
models for the predictor variables (the 
experimental treatment in the case of the 
GCC simulation studies [Table 1] or the 
EP in the case of the GRE dataset [Fig. 
2]). 

Issues that plague all modeling 
approaches (namely tradeoffs between 
over- and under-fitting) nevertheless 
persist with PLS, even with large (and 
growing) datasets such as the two featured 

herein. For these reasons, AI is quickly 
being exploited by biologists because of 
its capacity to “learn from mistakes” made 
from past simulations when building 
predictive models, and we propose to use 
NN to build adaptable models capable of 
forecasting the likelihood of coral 
bleaching. Although a description of how 
AI works is beyond the scope of this 
article, NN-based model generation is 
entrenched in the computer program 
learning from non-optimal projections in 
which data were over- or under-fit such 
that ensuing iterations strike a better 
balance in fitting the training and 
validation datasets; this balancing process 
is termed “boosting” by JMP. By 
integrating data from controlled tank 
studies (Table 1) and the field (Fig. 1a-b 
and Fig. 2), we hypothesize that these 
AI-optimized models (e.g., Fig. 3) will 
possess an elevated capacity to identify 
reefs of compromised resilience within a 
timespan in which management 
intervention could seek to mitigate 
local-scale stressors and therefore thwart 
coral bleaching. In contrast, the bleaching 
model developed by NOAA (“Coral 
Watch”), which is based on 
"degree-heating weeks," suffers from 
predicting bleaching likelihood only days 
before it is likely to begin, at which point 
it may be too late to enact any legislative 
changes. 
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Expected outcomes 
If the molecular biomarker- and 

environmental dataset-based machine 
learning AI models are able to predict 
which coral colonies and reef sites, 
respectively, are most susceptible to 
environmental change, then the developed 
analytical system will represent the first 
proactive means of assessing sub-lethal 
levels of stress in corals and will 
consequently aid us in determining which 
reefs are most stress-prone prior to more 
visible, late-stage manifestations of severe 
health decline (e.g., bleaching). This novel 
technology seeks to replace the retroactive, 
vision-based manner in which we 
currently assess coral reef health (i.e., by 
instead documenting death; Liu et al., 
2012). In the event that the former, 
bottom-up PLS-NN model is 
characterized by such predictive capacity, 
the underlying protein biomarkers will be 
integrated into a microfluidic chip; this 
device (discussed in detail in the next 
section) would allow for us to make 
predictions about coral stress 
susceptibility (CSS) within minutes of 
sampling (i.e., while still at sea). Using 
the (current) approach outlined herein, at 
least several days are required to generate 
coral health-indicative proteomic data.  

If the bottom-up and environmental 
data-based top-down PLS-NN models are 
able to accurately forecast coral bleaching 

events with confidence, the algorithms 
will be published on open-access websites 
(e.g., coralreefdiagnostics.com) prior to 
publication in freely accessible journals 
(e.g., PLoS ONE). Although publication in 
the peer-reviewed literature will be critical 
for our future job security, it is the models 
themselves that are most important for 
conservation, and we aim to interact with 
Kenting National Park (KNP) officials 
and other Taiwanese and Coral Triangle 
citizens working in the ecosystem 
management, tourism, and conservation 
sectors (including those working on 
cryopreservation; Lin et al., 2019). It will 
therefore be feasible to ensure that our 
data reach those capable of doing the most 
good with them over the course of this 
project. We aim to further alert managers 
and concerned members of the general 
public alike, of our growing capacity to 
begin to monitor Earth’s coral reef 
ecosystems in a proactive (i.e., pre-death), 
data-driven manner.  

Although corals and the reefs they 
construct will be the direct beneficiaries 
of this project, those millions of 
seafood-obsessed Taiwanese, Filipino, and 
Indonesia nationals whose livelihoods 
depend on these Coral Triangle reefs will 
undoubtedly benefit from a proactive 
management plan for the targeted 
protection of their local reefs. In addition 
to the societal and conservation impacts of 
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this project, it would provide ample 
opportunities for interaction among local 
scientists and students in the Coral 
Triangle such that we may further explore 
ways we can work together to understand 
how corals will respond to the changes in 
their abiotic milieu that will come to pass 
over the coming decades. Will even such 
science-drive, local-scale efforts be 
enough, though? Global over-population, 
and the increasing carbon footprint of 
those of rapidly developing countries 
(including all nations within the Coral 
Triangle with the exception of Taiwan, 
whose population will actually begin 
decreasing in the coming decades [albeit 
with an increased carbon footprint per 
person]), are worrisome indeed.  
 
Data dissemination  

We will publish all results in open 
access journals and on ABM’s personal 
website (coralreefdiagnostics.com) such 
that any interested individual has access to 
all data generated (e.g., gene expression 
levels, protein profiling results, images of 
the sampled coral colonies and reef sites, 
etc.), as well as both the bottom-up and 
top-down models. In fact, we will alert 
local marine managers at KNP (described 
above) of such findings well before the 
respective manuscripts are published. The 
reason for doing so is because it can take 
months or even years to publish a 

scientific manuscript; during that time, the 
bleaching-prone coral colonies likely to 
be identified herein will have already died. 
Data will be shared with coral reef 
managers through email or Microsoft’s 
OneDrive data cloud, which we use 
regularly to share coral imagery data, 
presentations, and other large files. We 
will also archive data (at cost) on the 
open-access website "dryad.org," which 
we have used previously as a repository 
for coral health and imagery data from the 
South Pacific. Also, we are advocates of 
data transparency and are currently 
working with developers at JMP to make 
interactive data plots both on ABM’s 
website and in manuscripts so that those 
interested can recreate the same figures 
that we made (and therefore gain greater 
confidence in the analysis and results).  

It should be noted that, although 
software developed by a for-profit 
software company, JMP (a subsidiary of 
the much larger SAS), will be used to 
build the PLS and NN-based predictive 
models, the model codes themselves are 
likely to be quite simple, especially for 
PLS; several lines of universal scripting 
code is all that will likely need to be 
exported to a website, manuscript, email, 
etc., and JMP allows for the exporting of 
all relevant code in a format known as 
“JMP scripting language” (JSL), which is 
convertible to more common languages 
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like Python or Java. In other words, one 
does not need to purchase a JMP license 
to be able to interpret the code. In the case 
of the inherently more complex NN 
algorithms, it is likely that a JSL-based 
NN code could nevertheless be written 
such that an individual could use freeware 
such as R to read, interpret, and execute 
the program using their own protein 
biomarker (bottom-up) or environmental 
(top-down) data.  

Regardless of the approach, or the 
number of model terms, both PLS and NN 
take only seconds to run on a standard 
personal laptop, despite the elegant nature 
of the latter, in particular. As such, 
although AI has the potential to 
revolutionize coral health diagnostics, the 
actual amount of computing power 
needed is minimal. We therefore 
anticipate that a plethora of scientists, 
even in the least developed nations, will 
have the potential to utilize these 
technologies; anyone with internet 
connection and the capability of executing 
R (3 MB and free of charge) will 
potentially benefit from the developed 
models in the event that the cheaper, 
top-down alternative is found to have 
predictive capacity.  

If, on the other hand, only the more 
expensive, biotechnology-driven, 
bottom-up AI/PLS+NN model is found to 
have high predictive capacity with respect 

to coral health, we will work with a 
Taiwanese microchip laboratory (that of 
Dr. Gwo-Bin Lee at National Tsing-Hua 
University) to manufacture small (5-6 cm) 
microfluidic chips (Fig. 4) featuring 
custom probes or antibodies that target the 
proteins found to be indicative of 
bleaching sensitivity (the "bleaching 
susceptibility chip") after validating the 
efficacy of the associated bottom-up CSS 
model. Although we do not intend to 
profit from this endeavor, which will 
enable us to assess coral health while still 
in the field, we may need to sell the chips 
at-cost since the microchip lab is 
non-profit. 
 

Evaluation of results 
An entire third of this project (Aim 

III) will be dedicated to evaluating the 
experimental models. Four to five P. acuta 
colonies will be tagged along each of two 
transects at each of two depths at each of 
four sites in Southern Taiwan (each of 
which being characterized by differing 
degrees of human impact and coral 
bleaching susceptibility; Fig. 1b) at each 
of four sampling times: January, March, 
May, and July of 2020. Then, iTRAQ 
protein labeling+nano-LC+MS/MS 
(iTRAQ-LC-MS/MS) biomarker profiling 
will be carried out as described above 
with a subset of two colonies from 
Wanlitong (Taiwan Strait) and Outlet 
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(Nanwan Bay) at each transect x depth 
and sampling time (n=48 proteomes). 
When combined with the 30 GCC 
simulation samples to be analyzed from 
Aim I and those of other GCC simulations 
(n=60 across five experiments) and GRE 
field sites (n=12 from Chagos/BIOT) 
proposed to be analyzed from Aim II, the 
proteomes of 150 corals will be profiled 
in 2020-2021. 

The resulting proteomic data for the 
field-sampled Southern Taiwanese corals 
will be input into the bottom-up PLS+NN 
model of Aim I; those found to be 
over-expressing proteins known to be 
associated with bleaching will be given 
high “bleaching susceptibility index” (BSI) 
scores and will be expected to bleach at 
high-temperature sampling times (e.g., 
September 2020). If, instead, the PLS-NN 
model yields low BSI scores (i.e., 
proteomes characterized by high 
concentrations of proteins associated with 
bleaching resistance upon comparison to 
those identified in exp.#1 of Aim I) in 
samples collected during the cooler 
sampling times (January, March, and May) 
will instead be given low BSI scores and 
will not be predicted to bleach during 
periods of elevated temperatures.  

Similarly, environmental data will be 
gathered from the same four field sites 
bimonthly (January, March, and May, and 
July of each year). Some such data, such 

as temperature and light can be measured 
by deployed loggers, which will be left at 
the sites to log data at 10-min intervals. 
Other such data, such as coral cover, can 
only be acquired by dedicated surveyors. 
Upon inputting the environmental data 
into the PLS+NN top-down models 
developed from assessment of the GCC 
simulation and GRE datasets (Aim II), we 
will make predictions as to which reefs 
are most likely to bleach as temperatures 
rise over the course of the following 
summer. Then, we will return to the same 
field sites when temperatures typically 
peak to determine the diagnostic capacity 
of our models.  

If these models (either or both) are 
found to have predictive capacity with 
respective to coral health and bleaching, 
we can proceed to not only publish the 
associated manuscripts, but, more 
importantly, alert government officials of 
these findings. For instance, if we 
discover that a high percentage of corals 
on a particular reef are bleaching-prone 
based on their biomarker signatures 
(bottom-up model), yet they have not yet 
bleached, managers could be alerted to 
attempt to promote coral resilience by, for 
instance, closing down the reef to fishing; 
doing so would diminish the likelihood of 
algal overgrowth of corals (since 
herbivorous fish would become more 
abundant). Active shading or cooling of 
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threatened corals could also be explored 
(Mayfield et al., 2019b). Upon validation 
of the BSI, we will work with the 
microchip lab discussed above to 
miniaturize and expedite the coral 
diagnostics process to where it can be 
employed in situ, with data derived only 
moments later. Ideally, though, the 
cheaper, environmental data-based 
top-down model will likewise be 
characterized by a high prognostic 
capability, as this simpler approach better 
lends itself to developing nations lacking 
in the funds or infrastructure for 
proteomic analyses (or the purchasing of 
diagnostic chips that may cost several 
hundred USD).  
 

External capacity development 
We routinely collaborate with 

researchers in the countries in possession 
of the world’s most beautiful (arguably) 
and high-biodiversity coral reefs, the 
Philippines and Indonesia (Fig. 7), and 
will seek share findings from this project 
to our Coral Triangle collaborators over 
the course of 2020 and into the future. As 
mentioned elsewhere, the simpler, cheaper, 
top-down model featuring environmental 
data-based predictions of coral reef health 
will ideally prove to have high predictive 
capacity; in this case, the computer scripts 
for the resulting algorithms could simply 
be emailed to our collaborators. If, on the 

other hand, only the more expensive and 
complex bottom-up model proves 
effective, then we will produce and 
distribute CSS diagnostic chips 
throughout Taiwan, the Philippines, 
Indonesia, and elsewhere in the Coral 
Triangle in 2020-2021.  

Finally, we will collaborate with 
scientists at LOF (where ABM was once a 
research fellow), the institute that funded 
and undertook the world’s largest ever 
coral reef survey (the GRE discussed 
above), as these scientists routinely 
analyze data that are used to develop 
educational tools for classroom training of 
students about coral reef ecosystems. As 
such, findings to emerge from this 
proposed work will not only result in the 
development of computer scripts that may 
only be interpretable by a few, highly 
trained individuals, but the more general 
biological findings of interest (e.g., HOW 
corals bleach) will be distilled into more 
basic, fundamental principles that will be 
integrated into the open-source marine 
biology teaching materials under constant 
development by LOF. See 
www.livingoceansfoundation.org/educatio
naltools for details and examples. 
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Fig. 7. A lush, high-biodiversity coral reef (“Siaba Kecil”) in Komodo National Park, 
Indonesia (taken in early 2019). Photograph by ABM.  
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