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Abstract 

The coral reef research field has grown markedly in terms of both human power 

and technological capacity in recent years, a fortuitous occurrence given the rapidly 

diminishing nature of Earth’s reefs on account of climate change and other 

anthropogenic stressors. Unfortunately, most coral biologists lack the statistical 

background to realize the full analytical potential of “big” datasets emerging from (non-

exhaustively) 1) expanding reef survey efforts, 2) satellite and in-water (e.g., 

photomosaic) coral reef imaging projects, and 3) “next-generation” molecular 

approaches (i.e., ‘OMICs); statistical training has not advanced commensurately with 

dataset size, a significant short-coming when considering the utility of these data in 

informing coral reef ecosystem management and conservation. One notably pervasive 

issue in ‘OMICs research in particular is the general omission of multivariate statistical 

approaches (MSA), which universally outperform the more commonly employed, less 

statistically conservative univariate alternatives when attempting to A) model 

experimental results and B) make predictions about reef coral health and fate. Herein I 

have attempted to make a case for coral biologists to strongly re-evaluate the merit of 

MSA, as well as explain why relying on univariate approaches alone may actually lead 

to spurious findings that do not advance our knowledge of corals and coral reefs.  
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Introduction 

Over the past 20 years, the collective 

research effort of the coral reef field has 

grown immeasurably as more and more 

young scientists in particular seek to study 

and/or save these incredibly beautiful (Fig. 

1), yet rapidly vanishing, ecosystems. 

Serendipitously, technological capacity 

has also increased dramatically as of 

recent, and many large-scale questions on 

the fundamental nature and persistence of 

coral-dinoflagellate endosymbioses can 

now be addressed in ways, and with levels 

of rigor and depth, that would have been 

unheard of even a decade ago (Mayfield et 

al., 2019b). It could be argued that 

advances in molecular biology (Mayfield 

et al., 2011) and high-level data analytics 

(Mayfield & Chen, 2019) have benefited 

the coral reef field (& certainly many 

others) to greater degrees than any and all 

other emerging discipline(s). As an 

example, a Ph.D. dissertation on 

scleractinian coral gene expression that 

required 5-6 years of concerted field and 

laboratory bench work (~60-70 hr/week; 

Mayfield, 2009; Mayfield et al., 2010) can 

now be completed in several days given 

the existence of optimized protocols 

(Mayfield et al., 2009) and well curated 

and annotated DNA/mRNA sequence 

databases (e.g., 

http://symbiont.iis.sinica.edu.tw/coral_pdl

tte/static/html/index.html#home for 

Pocillopora acuta & 

http://symbiont.iis.sinica.edu.tw/s_hystrix

/static/html/ for Seriatopora hystrix). 

In many such cases, though, “big” 

datasets are generated (e.g., sequenced 

genomes or transcriptomes) and explored 

using “tried and true” (bio)informatics 

pipelines (e.g., Xiang et al., 2015), yet key 

facets of the underlying biology are 

nevertheless overlooked due to analytical 

errors or oversights stemming from lack of 

training in statistics. This arises not only 

from poor data stewardship, but also from 

the “castles in the sky” phenomenon, in 

which a faulty script or statistical test is 

published in a respected, peer-reviewed 

journal, regularly cited, and then 

ingratiated within the field’s Zeitgeist to 

where it is no longer questioned. For 

instance, failure to rigorously assess the 

validity of the ITS2 marker in the initial 

Symbiodiniaceae genotyping protocols 

developed in the 1990s culminated in the 

publication of hundreds of articles on the 

importance of endosymbiont diversity in 

coral health (e.g., LaJeunesse, 2001) that 

were later refuted through a series of 

simple, cloning-based laboratory 

experiments undertaken by a highly 

motivated graduate student who 

uncovered extensive sequence 

heterogeneity of this gene within the 

Symbiodiniaceae genome (Apprill & 
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Gates, 2007); every ITS2 “type” can be 

found within a single cell, thereby 

invalidating all published research on the 

use of this marker for assessing 

dinoflagellate diversity (Putnam et al., 

2017). Rather than go “back to the drawing 

board” and admit defeat, the field has 

continued to build upon the ITS2-driven 

dinoflagellate diversity “castle” (e.g., 

LaJeunesse et al., 2009), which sits atop a 

decidedly flimsy foundation (“the air”). 

Entire careers and “paradigm-shifting” 

stories have been built off of a mistake that 

was pointed out from data collected across 

only several days of benchwork. Let us not 

allow sophomoric statistical errors 

currently rife within the coral ‘OMICs 

literature (e.g., DeSalvo et al., 2008; 

Meron et al., 2019) invalidate the 

potentially immense value of the myriad 

coral-dinoflagellate ‘OMICs datasets now 

being generated by researchers across the 

 
Fig. 1. A recent lava flow overtaken by several species of the reef-building coral genus 

Acropora. “Lava Flow,” off Gunung Api (volcano), Banda Islands, Maluku, Indonesia. 

Photo credit=Anderson Mayfield (a.k.a. 珊瑚醫生).  
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globe. Before addressing this central 

theme of this article, allow me to make one 

additional conceptual recommendation for 

those, like myself, interested in anthozoan 

health and physiology (Mayfield et al., 

2014a,c).  

Most studies of coral biology focus 

on only one member of the mutualism: the 

coral host (e.g., Palumbi et al., 2014) or the 

dinoflagellate endosymbionts. To be fair, 

science is inherently reductionistic, 

particularly molecular biology; if one is 

only interested in, for instance, coral gene 

expression, why need one concern 

his/herself with the dinoflagellates’ 

transcriptomes? This may indeed be a 

valid question for those seeking to 

elucidate coral thermo-biology, but for 

researchers (such as myself) interested in 

questions pertaining to coral health, 

resilience, and persistence, it is decidedly 

myopic and overly simplistic to consider 

the biology only one of the plethora of 

“compartments” within the holobiont 

(Cheng et al., 2016); only by probing the 

biology of the anthozoan host (~60%), its 

gastrodermal symbionts (30%), and the 

diverse microbial consortium (10%) 

collectively comprising the holobiont 

(Rosales et al., 2019) can we hope to paint 

a holistic picture of the health of a coral 

polyp or colony (Mayfield & Gates, 2007). 

In contrast, by characterizing host 

physiology alone, which is the current 

norm in the field (but see Mayfield, 2016.), 

a researcher will be unable to demarcate a 

level of health or make confident 

predictions regarding coral fate in this era 

of rapidly changing global climate 

(Mayfield & Chen, this issue).  

With respect to ‘OMICs technologies 

specifically, in almost all cases, the 

microbial (including Symbiodiniaceae) 

data are collected alongside those of the 

host at no extra expense and with no 

additional need to undertake further 

laboratory benchwork; the only extraneous 

effort required to incorporate these data 

would be in the time required to analyze 

them (granted, this is not a trivial endeavor 

for “big” datasets.). As such, all 

suggestions outlined below apply to data 

from both the anthozoan and microbial 

fractions. Whether the coral and microbial 

analytes are pooled or separated (e.g., 

Chen et al., 2017a) prior to statistical 

analyses, however, is project-dependent, 

and health-informing, diagnostic findings 

could be garnered from either approach.  

As did quality control fall to the 

wayside in early (& some more recent) 

works on Symbiodiniaceae genetics and 

multi-compartmental coral molecular eco-

physiology, some common statistical 

mistakes that would not be accepted by 

reviewers of traditional articles featuring 

“small” datasets (e.g., Enochs et al., 2020) 

are often overlooked because, in many 
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cases, those having undertaken “big data” 

analyses (e.g., transcriptomics) surely 

spent a considerable amount of money and 

so could not readily redo the experiment(s) 

(e.g., Mayfield et al., 2018b); this could 

potentially assuage reviewers to be more 

sympathetic. As an example, in the pursuit 

of attempting to understand the 

implications of global climate change 

(GCC) on coral-dinoflagellate biology 

(sensu Mayfield et al., 2013a-d, 2014a; 

Putnam et al., 2013), there has been a focus 

on uncovering differentially concentrated 

analytes (DCAs; e.g., genes, proteins, 

lipids, etc.) in a “p-value-mining” fashion; 

although these response screening 

analyses (RSA) are typically false 

discovery rate (FDR)-governed, if 

researchers fail to first uncover more 

general multivariate patterns in the dataset, 

one could make a compelling argument 

that RSA are actually unsupported or 

inappropriate. After all, an article 

presenting post-hoc differences (e.g., 

Tukey’s tests) among means in the absence 

of an overall ANOVA treatment effect 

would be flagged by a competent reviewer. 

In ‘OMICs research, however, this 

fundamental statistical flaw is oft 

overlooked (i.e., multiple univariate 

comparisons in the absence of a treatment 

effect). Whether this is more due to 

reviewer ignorance of statistics or the 

aforementioned willingness to overlook 

issues in datasets that have impressed in 

their size, scope, and/or cost of acquisition, 

remains to be determined. 

However, I would actually argue 

against the latter excuse: were one to 

invest heavily (in terms of funding, effort, 

& time) in a study in which a massive, 

potentially rich dataset was compiled, it 

would be my hope that both authors and 

reviewers would aim to ensure that it be 

exploited to the fullest extent possible. 

This idea is, in fact, another goal of this 

article: to highlight the notion that 

insightful multivariate data exploration 

algorithms, techniques, and presentation 

styles (beyond the few commonly adopted 

by coral biologists at present) exist and 

should be more seriously incorporated, 

particularly in the analysis of “big” 

datasets. I envision this as a call to “up the 

(statistics) ante” and urge researchers to 

take advantage of both “time-tested” and 

more contemporary data analysis 

approaches for making sense of the 

evermore complex datasets being 

generated nowadays. There will be a 

particular focus on ‘OMICs research as the 

associated datasets are amongst the most 

analytically daunting generated to date in 

the coral biology field, especially when 

these data are mapped onto habitats (e.g., 

Chen et al., 2017b, 2019) to attempt to 

understand the environmental drivers of 

variation in coral health and resilience 
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(Mayfield et al., 2015, 2016a, 2017a-c, 

2018c, 2019a, in prep.). My over-arching 

hypothesis is that most ‘OMICs 

researchers (not limited to coral biologists) 

would do well to familiarize themselves 

with the multivariate statistical approaches 

(MSA) beyond the lone method commonly 

found in the current literature: principal 

components analysis (PCA). Not only are 

these additional MSA more robust, but, as 

mentioned in the previous paragraph, it is 

actually statistically invalid to progress to 

the far more commonly reported univariate 

findings unless the MSA provide strong 

support for doing so. This extra degree of 

statistical conservation should not be seen 

as a barrier to publication, but instead as a 

means of tapping into the power of MSA 

(& preferably MSA combined with 

information theory) while simultaneously 

limiting the possibility of type I statistical 

errors near-ubiquitous within p-value-

mining studies (Anderson et al., 2000). 

 

Materials & methods 

As mentioned above, a plethora of 

studies have attempted to utilize cutting-

edge molecular approaches like RNA-

Sequencing (RNA-Seq) and mass 

spectrometry (MS)-based proteomics to 

elucidate the implications of GCC and 

other anthropogenic stressors on the 

cellular biology of marine organisms 

(Monteiro et al., 2020); the coral reef field 

has been an especially strong advocate of 

such ‘OMICs approaches (Wang et al., 

2013; Mayfield et al., 2014d; McRae et al., 

in review). In typical eco-physiological 

experiments, corals or cultured 

Symbiodiniaceae are exposed to 

experimental treatment(s) in the laboratory 

for a pre-set period of time prior to 

sampling biopsies for later 

macromolecular extraction (e.g., Mayfield 

et al., 2011). Upon sequencing the 

resulting DNAs, mRNAs, proteins, lipids, 

and/or metabolites via genomic (amplicon 

sequencing or meta-genomics), 

transcriptomic (RNA-Seq), proteomic 

(MS), lipidomic (MS), and metabolomic 

(MS) technologies, respectively, the 

researcher must typically attempt to 

discern patterns among tens of thousands, 

tens of thousands, thousands, hundreds, 

and hundreds of molecules, respectively. 

In very few cases are the number of 

analyzed samples greater than the number 

of analytes; even when profiling lipids, for 

which only 100-200 can typically be 

quantified in a single study, it is unlikely 

that the researcher’s budget would lend 

itself to analyzing 100-200 samples at 

current rates of $200USD/sample (similar 

to late-2020 prices for the other ‘OMICs 

technologies). Although a dataset with 10-

20 samples in total is publishable in even 

the most highly respected journals 

(assuming a robust experimental design & 
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preferably 3-5 replicates per treatment), 

what this signifies is that traditional MSA, 

namely multivariate ANOVA (MANOVA), 

cannot be performed with such datasets 

because MANOVA generally necessitates 

that the number of analytes be less than the 

number of samples. In other words, 

MANOVA cannot be used in >99% of  

‘OMICs studies.  

It is for this reason, perhaps, that 

MSA have fallen out of favor among 

‘OMICs researchers. Additionally, many 

are only interested in uncovering DCAs 

(e.g., differentially expressed genes 

[DEGs] & differentially concentrated 

proteins [DCPs] in their transcriptomic & 

proteomic projects, respectively), since, 

even when using a FDR-controlled p-value, 

it is likely that at least several analytes will 

differ significantly in concentration across 

treatments (i.e., results around which a 

manuscript-selling story could be 

generated). However, as mentioned above, 

this is analogous to proceeding directly to 

inter-mean post-hoc tests without having 

first carried out the requisite ANOVA; is it 

appropriate to search for univariate effects 

(i.e., on an analyte-by-analyte basis) 

without having previously documented an 

overall multivariate treatment effect? The 

general consensus seems to be that no such 

multivariate assessment is needed if one 

simply wants to search for DCAs across 

treatments, though this could simply be 

due to the aforementioned inability to use 

parametric statistical approaches (PSA) to 

uncover multivariate treatment effects. In 

fact, there are a number of ways to 

document multivariate treatment effects 

with ‘OMICs datasets, and I 1) describe 

them herein using a sample dataset and 2) 

advocate for their more widely adopted 

use in future ‘OMICs analyses (not limited 

to corals). Only when the approaches 

outlined below identify a treatment effect 

should the more rudimentary, commonly 

employed RSA be undertaken, preferably 

using an FDR-adjusted alpha of no higher 

than 0.01.  

PERMANOVA. Permutational 

MANOVA (PERMANOVA; Anderson et 

al., 2008) is likely the preferred means of 

assessing multivariate differences within 

‘OMICs datasets because it can be carried 

out when there are more analytes than 

samples and is robust even when analyte 

concentrations are collinear (a hallmark of 

‘OMICs datasets; discussed in more detail 

below). Furthermore, since it is based on 

assessment of inter-sample similarity, it is 

also robust to datasets featuring numerous 

0s (i.e., analytes that went unsequenced in 

certain samples; Clarke et al., 2014). 

PERMANOVA can be undertaken with 

PRIMER (UK) or with open-access scripts 

(e.g., R). In most cases, rows and columns 

represent samples and analytes, 

respectively, and transformations are 



 

34 
  

Platax 17: 27-52, 2020 
doi: 10.29926/platax.202012_17.0003 

critical since there may be large variation 

in mean analyte concentrations; some 

analytes might be at far higher 

concentrations than others (& so would be 

over-weighted in the analysis). The 

preferred means of accommodating inter-

analyte variation is standardization 

(Mayfield, in review), whereby the data 

for each analyte are transformed such that 

the mean is 0 and the standard deviation is 

1. This then puts each analyte on an “even 

playing field.”  

Given that such standardized data 

will inherently feature numerous negative 

values, the Euclidean distance matrix 

(EDM) is recommended over the Bray-

Curtis similarity matrix (BCSM), which 

cannot be computed with negative values. 

If a BCSM is preferred, then a “dummy” 

variable can be added to the standardized 

data to where all values are positive. 

Alternatively, a fourth-root transformation 

of the raw data might down-weigh high-

concentration analytes sufficiently to 

justify its use over standardization, in 

which case a BCSM could be constructed. 

Ultimately, the transformation and 

distance matrix used may be justified by 

determining which best limits 

heterogeneity in multivariate dispersion 

across treatments (Anderson, 2006); 

although likely less critical than when 

undertaking parametric ANOVA, in which 

homogeneity of (univariate) variance is 

critical (Levene’s test [or comparable], 

p>0.05 to justify use assuming a normal 

distribution), multivariate dispersion 

should ideally not vary significantly across 

experimental treatments (i.e., PERMDISP 

[PRIMER], p>0.05).  

As an example, please consider the 

“Seriatopora hystrix variable temperature 

study” (SHVTS) of Mayfield et al. (2012a), 

in which we exposed corals from an 

upwelling site known as Houbihu (see Lee 

et al., 1997; Ribas-Deulofeu et al., 2016; & 

Liu et al., 2012 for oceanographic, 

ecological, & human-impact data, 

respectively.) or a non-upwelling site 

(Houwan) to either upwelling-simulating 

(23-29°C over 6 hr) or stable-temperature 

(26°C) conditions for a week and profiled 

the molecular physiology of corals 

“transplanted” (ex situ) to foreign 

temperature environments (i.e., 

Houbihustable-temperatures & 

Houwanvariable-temperatures) vs. non-

transplanted controls (e.g., Houbihu corals 

exposed to upwelling-simulating 

conditions). In this experiment, then, there 

were two fixed factors: site of origin (SO; 

n=2) and temperature treatment (TT; 

stable vs. variable). We were particularly 

interested in their interaction, since we 

hypothesized that corals would 

demonstrate superior physiological 

performance when exposed to their “native” 

temperature conditions. Although this was 
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indeed documented to a certain extent 

(Mayfield et al., 2012a), the Houwan 

corals actually appeared unstressed at the 

highly variable temperature regime (one 

they never encounter in situ). It was later 

found that all corals were of the same 

genotype (Mayfield et al., 2014b), 

signifying that all phenotypic plasticity 

can be attributed to environmental, rather 

than genetic, differences. We later 

characterized the transcriptomes 

(Mayfield et al., 2016c) and proteomes 

(Mayfield et al., 2016b, 2018a; Mayfield, 

2020) of a subset of 12 samples to make 

conjectures about how these corals 

acclimated to variable temperatures in the 

laboratory, with the ultimate goal of 

shedding light on the molecular basis of 

thermo-acclimatization and phenotypic 

plasticity in situ. In an effort to promote 

data dissemination and transparency 

(discussed in more detail below), the 

physiological and target gene expression 

data from Mayfield et al. (2012a, 2014b) 

from this same subset have been posted on 

JMP®  Public: 

https://public.jmp.com/packages/Respons

e-of-corals-from-two-sites-to-sta/js-

p/4blb_hY7xkwQ4srBMp55N. 

The transcriptome features over 

125,000 contigs of both host coral and 

Symbiodiniaceae dinoflagellate 

(Cladocopium spp.) origin and can be 

downloaded from the S. hystrix-

Symbiodiniaceae SHVTS transcriptome 

server referenced above, as well as NCBI. 

To demonstrate the utility of 

PERMANOVA, I first standardized the 

data from a subset of ~93,000 contigs that 

passed all quality control. It is important to 

note that, unlike virtually all RNA-Seq 

pipelines referenced in the literature (e.g., 

Barshis et al., 2013), there was no 

requirement that a contig must be 

expressed by all samples; even those for 

which only 1 of the 12 samples expressed 

a particular gene were maintained in the 

analysis. The omission of 0s from ‘OMICs 

datasets likely stems from the early days of 

next-generation technologies, in which 

few (if any) replicates were analyzed. 

When replication is limited, it is difficult 

to discern whether a concentration of 0 

actually reflects an absence of that analyte 

in a sample or whether it was present but 

simply went unsequenced. Assuming 

proper replication (n>2), if there is a gene 

that is expressed by all replicates of one 

treatment and in none of the remainders, 

then this mRNA is likely to actually be the 

most informative with respect to 

developing mechanistic hypotheses 

describing the treatment effect (Mayfield 

et al., in review). If a second DEG is 

measured at 2-fold higher expression 

levels in one SO in the SHVTS, for 

instance, it is unclear whether this 

difference would have significant 

https://public.jmp.com/packages/Response-of-corals-from-two-sites-to-sta/js-p/4blb_hY7xkwQ4srBMp55N
https://public.jmp.com/packages/Response-of-corals-from-two-sites-to-sta/js-p/4blb_hY7xkwQ4srBMp55N
https://public.jmp.com/packages/Response-of-corals-from-two-sites-to-sta/js-p/4blb_hY7xkwQ4srBMp55N
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implications for cellular biology, 

especially given the well-established 

absence of congruency between gene 

expression and concentration of the 

respective protein in reef corals or 

Symbiodiniaceae (Mayfield et al., 2016c). 

In contrast, if a gene is absent from 

replicates of the stable TT, yet documented 

at high levels in those of the variable TT, it 

is far more likely to play a role in 

acclimation to variable temperatures than 

the 2-fold-DEG. 

Of the ~93,000 contigs, I imported a 

random subset of 65,000 into PRIMER 

(ver. 6) and created a EDM to assess inter-

sample similarity. Sub-selection was 

carried out because PRIMER currently 

limits analyses to 65,000 analytes (i.e., 

columns). After generating a multi-

dimensional scaling (MDS) plot (Fig. 3A) 

and a PCA biplot (Fig. 3B), I then ran a 2-

way PERMANOVA of SO, TT, and their 

 

Fig. 2. A healthy Seriatopora hystrix colony (inset) and an actively bleaching, Seriatopora 

spp.-dominated coral reef in the British Indian Ocean Territory (i.e., Chagos; May 

2016). The white scale bar in the inset is approximately 5 cm in length. Photo credits=珊
瑚醫生.  
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interaction. No random effects were 

considered. It is clear from Tab. 1 that all 

three simple random samples (SRS) 

yielded the same overall finding: strong 

SO effect on the transcriptome (both coral 

host & Symbiodiniaceae gene mRNAs 

were pooled in all analyses discussed 

herein.) yet no TT or interaction (SO x TT) 

effects (p>0.01). Given these findings, one 

might question our treatise on TT-sensitive 

DCPs (Mayfield et al., 2016c); although 

several genes were expressed only by 

samples of one TT and in no replicates of 

the other, the multivariate findings point to 

Tab. 1. Permutational multivariate analysis of variance (PERMANOVA) of a partial Seriatopora 

hystrix-Symbiodiniaceae transcriptome (Mayfield et al., 2016c). A type III sum of squares 

(SS) model (partial) with unrestricted permutation of raw data was run thrice (simple 

random samples [SRS]1-3). Significant multivariate site of origin (SO; upwelling site 

[Houbihu] vs. non-upwelling site [Houwan]) effects were documented in all three 

iterations, and the mean SO effect p-value was 0.001. NA=not applicable. TT=temperature 

treatment (stable vs. variable). 

Source df SS Mean 

square 

Pseudo-F p #Permu-

tations 

SRS1                                    

   SO 1 1779 1779 1.930 0.001 992 

   TT 1 917.4 917.4 0.9951 0.444 989 

   SO x TT 1 853.9 853.9 0.9263 0.668 985 

   Residual 8 7375 921.9            

   Total 11 10930     

SRS2       

   SO 1 1865 1865 2.013 0.001 991 

   TT 1 928.3 928.3 1.002 0.397 988 

   SO x TT 1 860.4 860.4 0.9286 0.640 985 

   Residual 8 7412 926.5    

   Total 11 11070     

SRS3       

   SO 1 682.4 682.4 2.778 0.001 985 

   TT 1 206.9 206.9 0.8420 0.587 985 

   SO x TT 1 210.65 210.6 0.8570 0.594 982 

   Residual 8 1965 245.7    

   Total 11 3065     

Average of three SRS     

   SO 1 1442 1442 2.240 0.001 NA 

   TT 1 684 684 0.9457 0.476 NA 

   SO x TT 1 642 642 0.9040 0.634 NA 

   Residual 8 5584 698    

   Total 11 8355     

 



 

38 
  

Platax 17: 27-52, 2020 
doi: 10.29926/platax.202012_17.0003 

a more compelling SO effect, in which 

case we should have prioritized the SO 

findings in the manuscript. We were 

consequently guilty of data (p-value)- 

mining in a statistically unsupported 

fashion.  

 

Fig. 3. MSA. Multi-dimensional scaling plot depicting similarity (Euclidean distance) among the 

12 samples of the Seriatopora hystrix variable temperature study (A) and a principal 

components analysis scoring plot (2-D) showing the same data (B). In both cases, data 

were standardized prior to ordination. Biplot rays have not been shown in B since they 

would obscure the 12 data points. 
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Non-parametric MANOVA 

(NPMANOVA). When one is confident 

that the distance matrix robustly represents 

similarity among samples (i.e., low MDS 

“stress” in the predicted vs. actual 

similarity [Shepard] analysis), 

permutation may be superfluous; the mean 

distances within and among treatments in 

a EDM or BCSM may be sufficient for 

testing treatment effects. Although only 

two or three dimensions are normally 

portrayed in figs. (e.g., two dimensions in 

Fig. 3), increasing dimensionality leads to 

a better fit between predicted and actual 

similarity (higher R2 in the Shepard 

diagram, or lower stress; Tab. 2). Instead, 

the number of dimensions will likely be 

dictated by the final NPMANOVA model. 

In the example herein, there were 12 coral 

samples (3 in each of 4 interaction groups). 

However, since SO and TT have only 1 df 

each, the model’s residual term is 8. This 

means that the maximum number of 

dimensions that can be included as Y terms 

in the NPMANOVA is 8. For this reason, I 

have computed the stress, the MANOVA 

Wilks’ lambda for the entire model, and the 

MANOVA SO effect p-values for 

dimensions ranging from 2 (the minimum) 

to 8 (the maximum) in Tab. 2. It can be 

seen that, although the predicted vs. actual 

similarity R2 (i.e., Shepard’s R2) increased 

with increasing dimensionality (as 

expected since more complex models 

inherently fit a higher percentage of 

variation within the dataset), the ability to 

detect an SO effect was inversely 

correlated; statistically significant SO 

effects were more likely to be documented 

with only two dimensions. In this example, 

the optimal dimensionality was six since 

this ordination is associated with an 

acceptable stress (<0.2) and a highly 

significant SO p-value. Please note that, 

although the MDS plot in Fig. 3A was 

computed across six dimensions, only the 

first two have been presented. 

A PCA of the same dataset will give a 

near-identical solution, and the ordination 

will actually be 100% identical if the data 

are standardized prior to MDS (as was 

conducted herein; Fig. 3B). Although PCA 

yields eigenvectors and eigenvalues that 

can be used to estimate treatment effects 

and the relative influence of various 

analytes, it cannot, in and of itself, 

statistically demarcate treatment effects 

(despite their being obvious in the case of 

the SO effect shown in Fig. 3B). Therefore, 

I recommend that ‘OMICs researchers 

strongly consider MDS in place of (or, at 

least, in addition to) the far more 

commonly utilized PCA in presenting 

multivariate ‘OMICs data simply because 

of the direct link between the coordinates 

in the MDS plot and the corresponding 

PERMANOVA and/or NPMANOVA. In 

contrast, PCA may better demonstrate the 
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aforementioned high collinearity among 

analytes (not evident in Fig. 3B since 

biplot rays were omitted), which would 

actually further invalidate the use of PSA 

(in addition to the #analytes>#samples 

issue raised above). Principal coordinates 

ordination (PCoA) could represent a 

compromise since it depicts inter-sample 

similarity and features biplot rays showing 

relationships among response variables 

and experimental predictors (alongside the 

percent variation explained by each axis). 

On the topic of inter-analyte collinearity, it 

is worth noting here that, for those 

interested in searching for DCAs in 

‘OMICs datasets, generalized regression 

(gen-reg) is superior to (& more robust 

than) FDR-governed RSA since it 

penalizes against collinear model terms; 

although the total number of DCAs may be 

less than generated by RSA, the collective 

DCA suite will be more informing (& less 

redundant) in model-building. Analyte 

clustering could also be considered. 

Partial least squares (PLS). 

PERMANOVA and NPMANOVA are not 

the only means of depicting and analyzing 

multivariate, highly collinear, “wide” 

datasets in which there are many more 

analytes than samples (>92,000 vs. 12 

herein); PLS is another such approach that 

is rarely taken advantage of by coral 

Tab. 2. Non-parametric multivariate analysis of variance (NPMANOVA) of a standardized coral 

transcriptome. A Euclidean distance matrix was used in the multi-dimensional scaling 

analysis with 2 to 8 dimensions. Please note that NPMANOVA cannot be undertaken with 

>8 dimensions given the model’s degrees of freedom (df)- site of origin (SO; df=1) x 

temperature treatment (TT; df=1)- and replication (n=3/SO x TT=12). Statistically 

significant p-values (<0.01) have been highlighted in bold, as have typically publishable 

stress levels (<0.1). No TT or interaction effects were documented for any model. Based 

on these results, a similarity analysis with six dimensions represents the best compromise 

in terms of limiting ordination stress while still enabling sufficient statistical power to 

detect a significant SO effect (see Fig. 3.).  

 

#Dimensions Shepard’s R2 Stress Wilks’ lambda (whole model) x 103 p-value (SO) 

8 0.7964 0.0605 0.2 0.1646 

7 0.7357 0.0746 0.4 0.0218 

6 0.6701 0.0904 2.7 0.0040 

5 0.6374 0.1141 3.2 0.0004 

4 0.6133 0.1452 4.4 <0.0001 

3 0.5831 0.1973 15.2 <0.0001 

2 0.5847 0.2913 56.9 <0.0001 
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biologists. In PLS, which bears similarity 

to PCA in its data reduction approach, 

latent variables (“projections to latent 

structures” being the original name) are 

established to simultaneously model 

covariance between predictor (X) and 

response (Y) matrices (Cox & Gaudard, 

2013). In addition to the usual model 

output terms (e.g., root mean square error), 

“variable importance” plots (VIP) are 

generated such that users can best 

determine which suites of analytes are 

most influential in delineating treatment 

effects, as well as which treatment factors 

drive the most variation across response 

variables. PLS is widely used in marketing 

and has been more recently adopted in 

metabolomic research, likely due to its 

accommodation of highly correlated 

response (& even predictor) variables. It 

also shines in response variable reduction 

and so may be an alternative to gen-reg in 

robust DCA identification.  

Herein several PLS models were built. 

In the first, the six dimensions from the 

MDS analysis (Fig. 3) were the Y terms 

(response variables), and the two treatment 

factors (SO & TT) were the predictors (X). 

The resulting non-iterative PLS (NIPALS) 

algorithm (KFold cross-validation of 

seven) determined that the root mean 

predicted residual sum of squares (PRESS) 

of 0.42 was minimized with a single latent 

factor. Although the model explained only 

21% of the variation in Y, it did clearly 

corroborate the aforementioned finding 

that the transcriptome was more strongly 

impacted by SO than TT (Tab. 3). It should 

be noted that the full PLS featuring 92,960 

genes (standardized data) as Y and the SO, 

TT, and SO x TT terms as X cannot be 

analyzed on a computer with 8 GB of 

RAM and a 1.7-Ghz Intel Core i7 

processor, though it is likely to yield a 

similar finding: the SO effect on the 

transcriptome >TT effect. When using the 

SO, TT, and their interaction (three 

separate models) as Y and the 92,960 

genes as predictors, a single latent factor in 

each accommodated 47, 46, and 26% of 

the variation, respectively, and 43,903 

(PRESS=0.64), 41,203 (PRESS=0.76), 

and 62,763 (PRESS=0.49) genes were 

characterized by VIP>0.8. Since nearly (or 

over in the case of SO x TT) 50% of the 

genes were included in the final models, 

this suggests that PLS may not be the 

preferred means of reducing dataset 

complexity (or identifying the most 

informative DCAs) in this particular 

example. 

When using the 6D coordinates as Y 

and SO alone as X, a PLS-based 

discriminant analysis (DA) model could 

correctly predict the SO for 100% of 

samples. When using all 92,960 genes as 

the Y in the PLS-DA, the misclassification 

rate was far higher: 5/12 (42%) called 



 

42 
  

Platax 17: 27-52, 2020 
doi: 10.29926/platax.202012_17.0003 

incorrectly with respect to site. For TT 

effects, 6D and 92,960-gene PLS-DA 

model misclassification rates were 2/12 

(17%) and 6/12 (50%), respectively. In 

other words, the models had a greater 

chance of correctly guessing the corals’ SO 

(mean success rate of prediction=79% 

correct) than their experimental TT (67% 

correct); this is unsurprising given the 

multivariate SO>TT effect trend 

yielded/suggested by PCA, MDS, 

PERMANOVA, & NPMANOVA. Finally, 

the PLS-DA classification rates for the SO 

x TT interaction group using the 6D and 

92,960-gene data as Ys were the same as 

for SO: 100 and 58%, respectively 

(mean=79% correctly predicted).  

Data dissemination 

Good data stewardship transcends 

simply identifying the best statistical 

approach for addressing the research 

question at hand; it also hinges upon rapid 

and transparent data dissemination. Given 

the ever-constant demand on most 

scientists to “publish or perish,” data 

sharing typically occurs well after article 

publication, if at all. Although this indeed 

limits data theft, in many cases such a 

significant amount of time passes between 

data collection and data dissemination to 

the public that the coral(s) from which 

such data were derived may no longer exist. 

For instance, a coral may be sampled in 

May, used in an experiment in June, with 

Tab. 3. Partial least squares variable importance plot (VIP) data generated upon using either the 

multi-dimensional scaling coordinates from six dimensions (“6D”) or the concentrations 

of the 637 unique differentially expressed genes (“DEG”) as the Y and the two treatment 

effects (& their interaction) as X. Model terms whose VIP were >0.8 (the commonly 

accepted threshold for model inclusion; Cox & Gaudard, 2013) have been denoted by 

asterisks (*). Of the 762 DEGs whose FDRlogworths were >2, 558, 6, and 198 were 

significantly affected by site of origin (73.2%), temperature treatment (0.8%), and their 

interaction (26.0%), respectively (with 125 having been affected by more than one 

experiment parameter, i.e., 637 unique DEGs). 

 

X VIP-6D VIP-DEG 

site of origin[Houbihu] 1.4132* 1.4680* 

site of origin[Houwan] 1.4132* 1.4680* 

site of origin[Houbihu] x temperature treatment[stable] 0.7416 0.9074* 

site of origin[Houbihu] x temperature treatment[variable] 0.6715 0.9734* 

site of origin[Houwan] x temperature treatment[stable] 0.7636 0.9295* 

site of origin[Houwan] x temperature treatment[variable] 0.6495 0.8602* 
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biopsies analyzed with ‘OMICs 

technologies in December. Then, the data 

may be processed the next May, with the 

article written the next December. After 6-

12 months of peer review and another 6-12 

months of revisions, the data may finally 

reach the public 2-3 years later. Although 

the article certainly benefits the authors’ 

careers, it does beg the question as to 

whether the data achieved what may, in 

many cases, have been the primary goal of 

the study: to aid in the ultimate 

conservation of that coral (& the reef 

framework in which it is embedded). Yes, 

the data may later be used to better manage 

the same reef, even if the study corals have 

died, but the point is that the data 

dissemination process is nearly always too 

slow to benefit the resident corals in a 

timely fashion (Mayfield & Chen, 2019), 

and proactive endeavors are certainly 

doomed to fail.  

Slow data dissemination can be 

combatted on at least two fronts: rapid 

publishing of data online in open-access 

format before manuscript submission (Fig. 

4) and expediting data acquisition itself. 

Regarding the latter, a typical ‘OMICs 

pipeline was used as the example in the 

preceding paragraph; although extractions 

can now be done in bulk, there is nearly 

always a bioinformatics bottleneck. Even 

if a well-established pipeline is employed, 

making sense of the data to where they are 

both publishable and of conservation 

benefit may take months or even years 

with a team of dedicated researchers. For 

these reasons, there has been a push to 

develop in situ diagnostic systems for 

coral health (Mayfield & Chen, 2019). To 

use an example from work currently being 

conducted by scientists at NOAA’s 

Atlantic Oceanographic and 

Meteorological Laboratory (AOML), if a 

proteomic analysis of environmentally 

challenged corals reveals that certain 

proteins show spikes in concentration in 

visibly healthy corals that later proceed to 

bleach, their concentrations could be 

measured in “test” field samples to 

determine which colonies and reefs are at 

most risk of bleaching as seawater 

temperatures rise (univariate biomarker 

approach). Antibodies raised against such 

protein biomarkers could be incorporated 

into microfluidic chips to where the data 

are obtained while still at sea, not months 

later like in the example above.  

If a candidate biomarker-based 

diagnostic approach is considered overly 

simplistic or lacks predictive power with 

respect to health, the more time-

consuming ‘OMICs-scale alternative 

could be undertaken; Fig. 5 presents one 

example of how this could be achieved. As 

molecular biology and data analysis 

technologies continue to improve, it is no 

longer inconceivable that a coral could be 
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sampled on Monday, with the ‘OMICs-

scale data obtained by the end of the week. 

Given the concerted effort by the coral reef 

research field to elucidate the molecular 

biology of anthozoan-dinoflagellate 

endosymbioses (sensu Peng et al., 2011), 

we will soon know exactly which 

molecules are most informative with 

respect to resilience by having analyzed 

their concentrations in experiments in 

which common physiological benchmarks 

like growth and endosymbiont density (Fig. 

 

Fig. 4. JMP®  Public. In addition to simply uploading data tables alongside manuscripts to 

promote data transparency, or posting data tables on public repositories (e.g., dryad, 

Figshare, & Zenodo), data can be shared interactively by websites such as JMP®  Public. 

In this example, the MDS and PCA plots of Fig. 3 are shown above an effect size vs. 

FDRLogworth (inverse log10 of p) volcano-like plot (logworth of 2=p of 0.01). Readers 

can download the data table and plots to their devices, or, alternatively, directly manipulate 

them on the website without the need for third party software. With this approach, 

interested readers can re-analyze data and attempt to reproduce findings from published 

manuscripts. Green icons=Houbihu. Black icons=Houwan. 
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6) are also measured (sensu Mayfield et al., 

in review). Although the health of the coral 

would not be known while still on the dive 

boat with this approach, the diagnostic 

speed might still be amenable to some sort 

of proactive conservation measure, even if 

it simply amounts to “triage,” whereby 

colonies (or, more likely, reefs) are ranked 

on a scale of 1 (highly likely to bleach) to 

10 (the most resilient corals studies to 

date). 

Efforts are currently being made to 

compare these “bottom-up” (molecular 

biology-derived) coral health predictions 

against “top-down” (global-scale) 

analyses of satellite temperature data (van 

Hooidonk et al., 2020), which have 

projected most reefs to begin bleaching 

annually by 2040. These analyses will 

allow us to identify “refugia,” reefs that, 

either due to environmental forcing or the 

unique physiologies of the resident corals 

(Brown et al., 2000), resist widespread 

bleaching. We had previously prioritized 

upwelling reefs such as those discussed 

herein since variable environmental 

conditions may “stress-harden” corals 

(Safaie et al., 2018; Storlazzi et al., 2020, 

but see Chollett et al., 2010.). 

Unfortunately, Houbihu experienced 

catastrophic bleaching in 2020, leading 

some to wonder whether ex situ husbandry 

(Lin et al., 2019; Mayfield et al., 2019b; 

Chang et al., 2020; Huang et al., 2020) or 

even cryopreservation (Lin & Tsai, this 

issue) represents the only means by which 

corals and their genetic material will 

persist beyond 2100. These severe threats 

also signify that poor data and statistical 

stewardship not only thwart progress in the 

field, but they could actually detrimentally 

affect the very coral reef ecosystems the 

researchers intend to conserve; statistical 

mistakes resulting in false positive results 

could, for instance, lead to management 

intervention at reefs that should not have 

been prioritized (i.e., resilient ones) at the 

expense of more stress-prone reefs (or vice 

versa, i.e., inadvertently prioritizing reefs 

with so little ability to withstand climate 

change and other anthropogenic stressors 

as to be beyond saving). By employing 

more statistically rigorous MSA prior to 

the more commonly utilized univariate 

approaches featured in most coral biology 

studies, not only will the dataset have been 

realized to its full potential, but greater 

insight into the health of the experimental 

or field corals will have been gained. 

Furthermore, MSA will allow us to make 

predictions as to which corals may have 

the physiological capacity to acclimatize 

to GCC and other environmental 

challenges, and which may only avoid 

extinction via cryopreservation and other 

human-assisted preservation efforts (sensu 

Lin & Tsai, this issue). 
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Fig. 5. Similarity analysis of coral health. In this example, molecular signatures are defined with 

multi-dimensional scaling (MDS) in at least two dimensions for healthy (i.e., resilient) 

corals (left image & “X’s” in MDS plot) and stress-susceptible (i.e., bleaching-prone) 

corals (right image & “Y’s” in MDS plot). “Test” samples “Z-Sample 1” (blue) and “AA-

Sample 2” (orange) are then collected from the field, analyzed, and, based on their 

positions on the MDS plot (i.e., proximity to experimental coral data points), hypothesized 

to represent healthy and stressed corals, respectively. Each polyp is approximately 1 mm 

in diameter. 
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Fig. 6. Coral health diagnostics. Molecular techniques alongside traditional physiological benchmarks (e.g., 

growth) can be used to make conjectures about current coral health as well as future resilience to 
environmental change. Please see Mayfield & Chen (same issue) for details on undertaking predictive 
modeling with ‘OMICs data. In this example, “Braindon” has demonstrated aberrant respiration with 
anomalously low endosymbiont densities; given these ailments, Dr. Coral (珊瑚醫生) recommends that he 
be cooled off and consume large quantities of plankton under photosynthetically active radiation levels near 
200 µmol m-2 s-1. 
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