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Abstract: El Niño–Southern Oscillation (ENSO) events are increasing globally in both frequency
and strength, and they can elicit coral bleaching events. The 1997–1998 ENSO caused mass coral
mortality with a 96% decline in live coral cover along the Central Mexican Pacific. However, in recent
years, these sites have shown signs of recovery. We used data collected in 1997 and 2015–2017 to
evaluate the coral recovery in this region and coral cover levels have now reached 50% of their pre-
1997–1998 El Niño values. Furthermore, a strong 2015–2016 ENSO event did not significantly affect
the live coral cover, potentially demonstrating that the local corals have acclimatized or even adapted
to higher temperatures. Even though branching species remain the most abundant morphotype,
a PERMANOVA revealed significant changes in the coral assemblage. Collectively, this dataset
is testament to the fact that corals within this region are capable of resisting or at least partially
recovering from thermal anomalies caused by ENSO events.

Keywords: coral bleaching; ecological resilience; El Niño–Southern Oscillation; environmental
recovery; hermatypic corals; ocean warming

1. Introduction

Coral reefs, considered to be amongst the most ecologically and economically valuable
marine ecosystems [1,2], are declining worldwide due to increasing seawater temperatures
brought upon by climate change [3–5]; half of the coral reefs of the world have been already
lost [6]. When abnormally high temperatures persist for extended periods (days–weeks),
coral bleaching can occur. Given the reef coral dependency on their photosynthetically
active endosymbionts for food, bleaching can result in a partial or complete coral colony
mortality followed by the degradation of the reef [7]. Increases of only +1 ◦C above the
annual summer mean may trigger bleaching [8]. As such, El Niño–Southern Oscillation
(ENSO) events, which can feature temperatures of + 2–3 ◦C above the summer maxima
for extended periods (usually six weeks or more), can cause bleaching events, mass coral
mortality (and, consequently, reductions in the coral cover), and reef degradation [9]. Since
the 1980s, four strong ENSO events have caused a massive global loss of coral, and three
of them (1982–1983, 1997–1998, and 2015–2016) have been particularly harmful to coral
ecosystems in the Eastern Tropical Pacific (ETP) [4,10–12].

ENSO events and, more generally, elevated temperatures, affect corals differently in
different regions; certain taxa are notably more tolerant than others [13]. Such differential
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responses have been attributed to life-history traits, a local acclimatization capacity [14,15],
and other factors; this heterogeneity means that many reefs respond to temperature anoma-
lies in ways that are hard to predict [16]. Understanding how coral reefs are recovering
from bleaching events is important for assessing their ability to survive future changes in
their environments, especially in regions severely affected by ENSO events such as the
ETP. Although there are available data on coral recovery after mass bleaching events in the
ETP [10,11,17], this region still remains vastly understudied compared with other coral reef
systems; only a few sites have been monitored over decadal timescales [17]. In the Central
Mexican Pacific (CMP), the intense 1997–1998 bleaching event caused a >95% decrease
in the live coral cover [18]. Despite this loss, recent observations suggest that CMP coral
ecosystems are not only recovering but also appear to be more resistant to global stressors
such as ENSO events [14,15,17,19], pers. observ. As this apparent recovery has not been
quantified, we compared the coral composition before the 1997–1998 ENSO event [18,20]
with survey data from 2015–2017 and hypothesized that the reef assemblage may have
significantly changed over time in response to repeated ENSO and other stress events.

2. Materials and Methods

The coral ecosystem surveyed is located in the northern limits of the ETP; it is a CMP
site known as “Punta de Mita” (20.7699◦ N, 105.5412◦ W). The CMP is considered to be
an oceanographic transition zone as the cold California Current and the southerly flowing
warm waters from the Gulf of California converge with the warm coastal Mexican current
running north at this location [21] (Figure 1a). This creates a complex dynamic in the region,
where water moves north by northwest during summer and fall; during the rest of the
year, it flows south by southwest with seasonal upwelling events during spring [22]. A
geostrophic current inside the bay generally flows north [23] (Figure 1b) and the sea surface
temperature ranges from 18 to 32 ◦C with an annual mean of ~27 ◦C [24]. The temperature
peaks in summer, albeit with daily drops associated with internal waves [22,25].

The in situ coral cover was determined by scuba diving from eight survey times at
depths of ~3 m before the 1997–1998 ENSO event and in 2015, 2016, and 2017. The surveys
for each year were carried out during both winter and summer to obtain the mean % live
coral cover (LCC) per year using two different approaches. In 1997, before the study site was
affected by the 1998 ENSO event, the cover was estimated using 3 permanent line transects
of 10 m laid parallel to the coast. The coral cover was assessed within 10 quadrats of 1 m2

positioned along each transect. For the 2015–2017 surveys, 3 transects of 25 m were placed
at the same site as in 1997 in both seasons; however, to improve the comparability with
studies undertaken elsewhere in the Mexican Pacific, the coral cover was assessed within
6 quadrats of 1 m2 randomly placed along each transect—the new official methodology
specifically standardized for this region. The second reason for this shift in methodology
was because the prevailing area where the corals were found shifted over the 20-year period
(discussed in the Results section), increasing its area.

In each of the 24 transects, the coral cover was documented overall and at the species
level, and both the mean LCC and mean relative % of coral cover (RCC) for each species
were calculated for each year. All surveys were performed by the same trained divers in
order to avoid a bias in the coral identification. The identification of pocilloporid corals
at the species level and the validation of the registered species were performed according
to the taxonomic criteria described previously [26]. The species LCC was standardized
to the transect area and used to estimate the changes in the community structure, as also
assessed by the species richness (S), Shannon diversity (H’, log10), Pielou evenness (J’), and
Simpson dominance (λ) using PRIMER v.6 and PERMANOVA+ [27]. As the data were
neither normally distributed nor homoscedastic [28], a one-way univariate permutational
ANOVA based on an Euclidean distance matrix and 10,000 permutations was performed
following the criteria of [29] with the survey year as a fixed factor. The goal of this analysis
was to quantify the community-scale shifts in the benthos over time.
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Figure 1. Study area. (a) Central Mexican Pacific (CMP). Arrows depict oceanographic currents. CC
= California Current and CMC = Coastal Mexican Current. (b) Study site in the CMP. Arrows show
the general geostrophic superficial circulation inside the bay. In both panels, the black dot denotes
the study site: Punta de Mita (Nayarit, Mexico).

A PERMANOVA was used to evaluate the LCC of each species vs. time and the
data were fourth root-transformed to reduce the influence of the most abundant coral
species prior to building a Bray–Curtis similarity matrix (visualized with non-metric
multidimensional scaling (nMDS)). The contribution of each coral species was evaluated
with a multiple correlation test in PRIMER [27].

Finally, to evaluate the effect of ENSO thermal anomalies on the changes in the coral
cover over time, an LCC model using both the historical and current data for the CMP (see
Table 1) was constructed with non-linear regressions (Peak, Gaussian, 4 parameter). The
model was restricted only to the CMP as the variation in the species composition along
the ETP because the differential responses to ENSO events may otherwise have limited
our ability to resolve local scale trends. The SST anomaly data were based on the National
Oceanic and Atmospheric Administration Oceanic Niño index (ONI) 3.4 (https://origin.

https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php
https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php
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cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php accessed on 1
February 2021) and the analysis was undertaken with Sigma Plot v.11 [30]. For all statistical
analyses, an alpha level of 0.05 was set a priori.

Table 1. Historical live coral cover (LCC) records in the Eastern Tropical Pacific following bleaching
and mortality episodes associated with El Niño–Southern Oscillation (ENSO) events. Site abbrevi-
ations: GC, Gulf of California; CMP, Central Mexican Pacific; SMP, Southern Mexican Pacific; CR,
Costa Rica; PN, Panama; GI, Galapagos Islands; EC, Ecuador; ETP, Eastern Tropical Pacific; NA, data
not available.

ETP Site Years
Surveyed

ENSO Event
*

Pre-ENSO %
LCC

Post-ENSO % LCC
(% Mortality)

% LCC After
Recovery Reference

Cabo Pulmo (GC) 1987–1988 Strong ~30 (10) NA [31]
GC 1997–1999 Very Strong ~28 25 (18) NA [20]
GC 1996–1998 Very strong NA 59.3 (13.6–21.9) NA [32]
GC 2006 Weak NA No mortality - [33]

Careyeros (CMP) 1997–1998 Very strong 22 1 (96) NA [18]
Punta de Mita (CMP) 1997–1998 Very strong 33 <5 (96) NA [18]

CMP 1997–1999 Very strong ~15 <5 (>60) NA [20]
Punta de Mita (CMP) 1997–2017 Very strong 32.7 NA 14.8 This study

Oaxaca (SMP) 1997–1999 Very strong ~57 <5 NA [20]
SMP 2009 Moderate 18–65 NA NA [34]

El Chato (SMP) 2009 Moderate 18 NA NA [35]
Manzanillo (SMP) 2009 Moderate 59 NA NA [35]

Zacatoso (SMP) 2009 Moderate 65 NA NA [35]
CR 1982–1983 Very strong NA (50) NA [36]

Isla del Caño (CR) 1980–1984 Very strong 17.8 8.55 (46.16) NA [37]
Isla del Caño (CR) 1985 Weak 5.4 NA 6.94–18.76 [38]
Isla del Caño (CR) 1984–1999 Several events ~32 ~5 (5–52) ~ 10 [39]
Cocos Island (CR) 1978 and 1987 Very strong NA (90) 2.99 [40]
Cocos Islands (CR) 1987, 2002 Several events 2.99 NA 14.87 [9]

Gulf of Papagayo (CR) 1996–1998 Very strong NA (5.7) NA [41]
Punta El Bajo (CR) 1985 Weak 45.9 NA NA [42]

PN 1982–1983 Very strong NA (75–85) NA [36]
PN 1997–1999 Very strong NA (13.1) NA [43]

Gulf of Chiriqui (PN) Pre-1983 and
1984 Very strong 60–90 3.3–63.4 NA [44]

Gulf of Chiriquí (PN) 2016–2018 Very strong 50 40.8 (9.2) NA [45]
Gulf of Panama (PN) 2016–2018 Very strong 78 71.2 (6.8) NA [45]

GI 1982–1983 Very strong NA (97–100) NA [36,44]
GI 1997–1999 Very strong NA (26.2) NA [43]
GI 2007, 2012 Several events 19.4 NA 32.3 [11]

Shark Bay, Wenman
(GI) 1975, 2012 Several events 14.4 NA 36.94 [11]

EC 1975, 1986,
1998 Several events NA (7) NA [40]

Overall ETP 1982–1997 Several events 32.7 7.1 33.9 [17]

* Global ENSO intensity classification according to the ONI index of NOAA.

3. Results

Seven species of scleractinian coral and three different morphologies were observed at the
study site. Specifically, there were four branching species belonging to the genus Pocillopora
Lamarck, 1816: Pocillopora verrucosa (Ellis and Solander, 1786), Pocillopora damicornis (Linnaeus,
1758), Pocillopora capitata (Verrill, 1864), and Pocillopora meandrina (Dana, 1846). There were also
two massive species, Porites panamensis (Verrill, 1866) and Pavona gigantea (Verrill, 1869) as well
as one sub-massive species (Psammocora stellata; Verrill, 1866). At no sampling time were all
seven species found on the reef simultaneously (Figure 2). Branching corals represented 80% of
the relative cover when pooling the data across the years with massive and sub-massive species
collectively comprising the remaining 20%. Prior to the 1997–1998 ENSO event, branching

https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php
https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php
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corals comprised 96% upwards of the RCC (Figure 2a). Although branching species remained
the most abundant at all sampling times, the cover of massive species has increased in recent
years (>12%, 1997 vs. 2017) and changes in the cover of various species were evident (Figure 2b).
In 1997, the coral cover was dominated by P. damicornis (70% of the RCC). Since 2015, however,
P. verrucosa has been the most abundant species with an RCC of 52% (Figure 2b).

The PERMANOVA showed no significant changes in the richness, diversity, evenness,
or dominance of the coral community species (Table 2). However, the overall LCC decreased
3-fold after the 1997–1998 ENSO event (Tables 2 and 3; Figure 3a). The PERMANOVA revealed
temporal differences in the coral assemblage (Pseudo-F = 2.24, P[Perm] = 0.0182; Figure 3b);
this was likely due to the aforementioned observation that P. damicornis was the most dominant
species prior to the 1997–1998 ENSO event with P. verrucosa becoming relatively more common
afterwards. These temporal differences were also observed in the overall LCC across the CMP;
the model showed a significant relationship between the changes in the historical records of
the LCC and thermal anomalies (R = 0.62, p = 0.02; Figure 4), and the coral cover was tightly
linked to high-temperature thermal anomalies driven by the ENSO events (i.e., a lower coral
cover after strong ENSO events). However, it is important to emphasize that the same pattern
was not recorded at Punta de Mita during the 2015–2016 El Niño event (considered to be the
most severe over the last 40 years [4]). The LCC was not affected during this period and the
PERMANOVA showed no significant differences in the coral cover among 2015, 2016, and 2017
(Figure 3a). Additionally, the model constructed showed that this site exhibited the highest LCC
In the CMP during this ENSO period (~30–35%; Figure 4).

Figure 2. Live coral cover across years by (a) morphology and (b) species.
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Table 2. One-way permutational ANOVA of coral reef (1) species richness, (2) diversity, (3) evenness,
(4) dominance (all as indices), and (5) live coral cover (%).

Index Pseudo-F P (Perm)

Number of species 1.0187 0.4242
Diversity (H’) 1.9903 0.1438
Evenness (J’) 2.761 0.0666

Dominance (λ) 2.1264 0.1238
Live coral cover (LCC) 6.5954 0.0026 *

* Result deemed statistically significant (p < 0.05).

Table 3. Post-hoc pairwise t-tests for the permutational ANOVA of live coral cover over time.

Test t P (Perm)

1997 vs. 2015 4.7504 0.004 *
1997 vs. 2016 3.4194 0.0121 *
1997 vs. 2017 2.8015 0.037 *
2015 vs. 2016 0.077855 0.9424
2015 vs. 2017 0.92631 0.3741
2016 vs. 2017 0.64205 0.5309

* Result deemed statistically significant (p < 0.05).

Figure 3. (a) Live coral cover in the study years (mean ± SE; letters represent groups with significant
differences) and (b) variation in coral composition and cover over time as represented by the contri-
bution of the coral species to the existing variation (dotted lines) and the succession trajectory over
time (black lines).
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Figure 4. Model describing historical changes in live coral cover (LCC) in the Central Mexican Pacific
associated with ENSO thermal anomalies based on the Oceanic El Niño Index of NOAA (x-axis).
Gray symbols depict non-ENSO years, red symbols are El Niño years (warm thermal anomalies), and
blue dots are La Niña years (cold thermal anomalies). Triangles indicate data from this study.

4. Discussion

Coral bleaching and mortality have been observed worldwide over the last three
decades [4,17] and the 1997–1998 ENSO resulted in a 96% decrease in the LCC across the
CMP. At Punta de Mita, the LCC was <5% after the 1997–1998 ENSO event [18,20]. Between
1998 and 2017 (the most recent survey), the LCC rose to 15% and is on an increasing
trend despite the fact that multiple El Niño events have taken place between 1998 and
2015 [4,5], (Figure 3a). Unfortunately, the rate of recovery could not be determined given
that surveys were not undertaken between 1998 and 2015; perhaps the increase from <5%
to 15% occurred before the survey. Despite this limitation, other studies in the ETP have
documented coral recovery or loss over similar periods [10,11] (Table 1) and our results
document not only a partial recovery of the coral cover but also the maintenance of coral
populations despite more recent ENSO events. Furthermore, they highlight the importance
of the continuous monitoring of the sites because although the coral cover may never return
to pre-1997 levels, the extant populations appear to now be able to withstand ENSO events
and could, therefore, represent important thermal refugia in the region.

The mass mortality event observed following the 1997–1998 El Niño event also caused
a change in the structure of the coral community. After the 1997–1998 ENSO event, P.
damicornis declined whereas P. verrucosa increased and is now the most abundant species
(Figure 2b). In addition, the dominant massive species observed pre-ENSO were P. pana-
mensis and P. stellata; since then, P. gigantea has settled in the area and gradually become
more common. The increase in the cover of the massive and sub-massive species recorded
(Figure 2) was not a consequence of the reduction of the proportion of branching Pocillopora
colonies; instead, it would appear to stem from enhanced larval recruitment in the area.
The massive colonies first recorded during the 2015 survey presented a diameter of <20 cm
and, considering growth rates of 0.50 cm yr−1 in the region for P. gigantea and 0.33 cm yr−1

for P. panamensis [46], we can assume that the colonies were recruited to the site almost ten
years after the 1997–1998 ENSO event. The presence of both species and the evidence of
successful sexual reproduction [47] at this site, which was already hypothesized to repre-
sent a relatively resilient CMP coral community [14,48], suggests that not only massive but
also branching species are being recruited to the reef. A genetic connectivity between the
CMP and other regions such as the Southern Mexican Pacific and the Gulf of California has
been observed for both massive [49] and branching species [50].
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Historical changes in the coral richness and abundance of relative species have also
been observed in the western Pacific and Indian Oceans [51,52] but this has not been
recorded elsewhere along the eastern Pacific [10,11]. Although branching pocilloporids
remain the most abundant coral, the dominant species has shifted from P. damicornis to P.
verrucosa and the massive species are increasing in cover over time. As bleaching does not
affect all corals equally [13], the changes in the species richness and relative cover seen
in this study may be related to the community composition before the 1997–1998 ENSO
in which the most abundant species, P. damicornis, also happened to be the least resilient;
therefore, it experienced the most severe reduction in abundance with no recovery to
date. Indeed, after the 1997–1998 ENSO event, coral recovery in the region was considered
to be uncertain or even unlikely [18] given the susceptibility of pocilloporid corals to
thermal stress [53]. However, it appears that P. verrucosa is characterized by a higher
resilience than P. damicornis, as has been documented by others [54,55]. This has been
linked to their high growth rates [19] and potential to recruit locally [56]. Others have
found evidence of branching coral acclimatization to ENSO events [14,20,57]. Considering
both the historical mortality records, the increase of the coral cover over the years, and the
resistance documented during the last ENSO events at both local and regional levels (see
Table 1 and Figures 3 and 4), we hypothesized that the coral community at Punta de Mita
should resist future ENSO events.

The coral cover rose slowly from 2015 to 2017, a contrasting trend to other CMP
(Figure 4) and ETP coral ecosystems (where the LCC declined up to 50% following the
severe 2015–2016 ENSO event [58]). Even though the LCC has not returned to pre-1997
levels (~30%), it has recovered 50% of this value over a 20-year period and the coral cover
remains higher than that of other competitors such as sponges and macroalgae [15]. The
fact that richness, evenness, and diversity have been maintained at pre-1997 levels and
that the coral cover has risen from less than 5% after the 1997–1998 ENSO period [18], pers.
observ. to 15% in 2017 (this study) is a potential statement to the recovery capacity and
resilient nature of the scleractinian corals at the study site. These attributes are particularly
important given that ENSO events are likely to become stronger and more frequent in the
future.

Previous studies in the ETP have documented the changes in the community composi-
tion of scleractinian after ENSO events [10,11]. Post-ENSO/bleaching communities tend
to shift toward massive species, especially poritids and faviids, which generally experi-
ence lower mortality rates during thermal stress events [13,59]. Models from a previous
study [60] suggested that branching species in the ETP will gradually disappear and will
be replaced by thermo-tolerant massive corals. If this proves to be the case, the CMP
may be among the few regions in the ETP where branching pocilloporids persist in a high
abundance. However, shifts in coral communities do not always tend toward massive
corals [60] and the proliferation of pocilloporids has been observed in other locations (e.g.,
French Polynesia, see [56]).

Reef recovery depends on many factors, including the physiology of the resident
corals and their associated dinoflagellates; the growth rate, reproductive strategy, acclima-
tization capacity, and type(s) of endosymbionts of a species can all affect the ability of
the coral to recover from a disturbance [61]. Massive species in the ETP have low cal-
cification rates (e.g., only 0.49 g cm−2 yr−1 for poritids [62]). In contrast, pocilloporids
are characterized by relatively high growth rates (5.03 g cm−2 yr−1) and many continue
to grow relatively rapidly even after El Niño events [19]. Such high post-ENSO growth
rates may explain their relative dominance herein as well as the aforementioned capacity
for thermo-acclimatization. Larval influx from elsewhere in the CMP is also likely to be
important in driving the trends observed although whether the imported larvae have a
comparable thermo-tolerance with those released from the potentially stress-hardened
colonies of our study remains to be determined. Lastly, pocilloporid corals in other ETP
regions are associated with endosymbionts from the genus Durusdinium, a lineage known
for its thermo-tolerance [63]; although dinoflagellate genetic analyses were not undertaken
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herein, if the corals of our field site hosted Durusdinium spp. endosymbionts as seen in
nearby sites [14,64], this could also have contributed to their ability to withstand the severe
2015–2016 El Niño event.

Coral communities in the Northeastern Tropical Pacific are resilient in that they have
survived repeated bleaching events. Although we hypothesized that they would likely with-
stand future ENSO events, their ability to do so may become compromised by local anthro-
pogenic threats, particularly an accelerated urban growth and tourist development [1,2,65].
Specifically, declining water quality due to terrestrial runoff, nutrient enrichment, and sedi-
mentation originating from coastal development [16,48] affect coral reproduction, growth,
and survival [66,67]. In the study region, urban areas are expected to grow rapidly to meet
tourism needs [68]. In the long-term, such stressors may then inhibit the coral recovery [12].
Although the purported resilience to thermal stress arising from ENSO events documented
herein is encouraging, it does not necessarily signify that these reefs will persist into the
next millennium. At present, they are surviving and strategies to ensure they continue to
do so have to be developed.

The Tropical Pacific region was historically characterized as non-optimal for reef
development [69] mostly because of the prevailing oceanographic conditions; however,
this region as a whole has not suffered in terms of the loss of coral cover as seen in other
locales such as the Caribbean and the Indo-Pacific [17]. This dataset is testament to the
fact that certain reefs of this region continue to increase in cover of live coral despite a
repeated exposure to thermal anomalies caused by ENSO events. Twenty years after the
1997–1998 El Niño event, this resilient reef ecosystem has regained 50% of the pre-ENSO
LCC. Furthermore, diversity has been maintained in recent years; once rare species have
increased in abundance and, along with the dominant scleractinians, they continue to
persist through repeated (and more frequent) ENSO events.
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